Jing Zhang | Microbial Cell Biology | Best Researcher Award

Prof. Jing Zhang | Microbial Cell Biology | Best Researcher Award

Prof. Jing Zhang , Southern Medical University , China

Jing Zhang is a renowned researcher in the Department of Laboratory Medicine at Nanfang Hospital, Southern Medical University, China. With a focus on the development and biomedical applications of novel luminescent materials, Jing Zhang has authored 49 papers as the first or corresponding author, contributing to 70 publications overall in prestigious journals like Nature Communications, Advanced Materials, Angewandte Chemie, and ACS Nano. His research spans the realms of aggregation-induced emission (AIE) luminogens, phototherapy, tumor targeting, and antibacterial strategies. Dr. Zhang has been involved in cutting-edge research that integrates materials science with clinical applications, particularly in tackling challenges such as drug resistance in pathogens and developing innovative therapies for diseases like cancer and Alzheimer’s. His contributions to the scientific community have earned him significant recognition, positioning him as a leading figure in his field.

Publication Profile: 

Orcid

Strengths for the Award:

Jing Zhang has made exceptional contributions to the field of luminescent materials and their biomedical applications. His research on aggregation-induced emission (AIE) luminogens, anti-bacterial photosensitizers, and tumor-targeted therapies is groundbreaking. With 70 published papers, including influential journals such as Nature Communications, Advanced Materials, and Angewandte Chemie International Edition, he has demonstrated a consistent track record of innovation. Notably, his work spans areas such as drug-resistant bacterial elimination, tumor eradication via chemo-phototherapy, and multi-modal therapy using luminescent materials. His collaborative approach with top researchers in the field enhances his impact, and his work holds significant potential for real-world applications in healthcare, particularly in the fight against cancer and drug-resistant pathogens.

Areas for Improvement:

While his scientific contributions are highly commendable, expanding the outreach of his work through interdisciplinary collaborations and ensuring more clinical applications of his research could further amplify his influence. Additionally, increasing visibility in global collaborations could help strengthen his role as a leader in the biomedical materials field.

Education:

Jing Zhang obtained his education from Southern Medical University, where he earned his advanced degrees in laboratory medicine. He demonstrated a keen interest in the intersection of chemistry, materials science, and biomedical research, which laid the foundation for his expertise in luminescent materials. Zhang’s academic journey reflects a commitment to exploring innovative solutions in material science, particularly those that bridge the gap between chemistry and clinical applications. His focus has been on advanced luminescent systems and their integration into real-world therapeutic applications. Over the years, he has built a strong foundation in both theoretical knowledge and practical, experimental research, publishing numerous high-impact papers. His work showcases a deep understanding of aggregation-induced emission (AIE) and photonic materials, which have significant implications for modern diagnostics and therapies.

Experience:

Jing Zhang has extensive experience in the field of laboratory medicine and material science, specializing in luminescent materials. Over the years, he has led numerous research projects that focus on the synthesis, application, and characterization of aggregation-induced emission (AIE) luminogens. His contributions have significantly advanced the development of innovative materials for cancer therapy, antibacterial treatments, and diagnostic applications. Zhang has published extensively in high-impact journals, collaborating with leading researchers in various scientific disciplines. His work has focused on the design of photoactive materials for photodynamic therapy, drug-resistant bacterial elimination, and brain-targeting cancer therapies. In addition to his research, Dr. Zhang has been actively involved in mentoring students and researchers in the field, guiding the next generation of scientists. His research and leadership have cemented his role as an influential figure in biomedical material science.

Research Focus:

Jing Zhang’s research primarily focuses on the development of novel luminescent materials, particularly aggregation-induced emission (AIE) luminogens, for a variety of biomedical applications. He has made significant contributions to creating multifunctional materials for photodynamic therapy, tumor targeting, and antibacterial treatment, specifically addressing the challenges of drug-resistant pathogens. Zhang’s research also includes the development of advanced nanomaterials for imaging and therapy, including near-infrared (NIR) systems that can be used for real-time diagnosis and therapy. His work often integrates materials science with clinical applications, targeting diseases such as cancer and neurodegenerative conditions like Alzheimer’s. A key aspect of his research involves exploring how these materials can be engineered for specific medical needs, including precision targeting of tumors and bacteria. Zhang’s research aims to bridge the gap between basic science and therapeutic applications, ultimately contributing to advancements in medical diagnostics and treatment.

Publications Top Notes:

  1. AIE-Active Antibacterial Photosensitizer Disrupting Bacterial Structure: Multicenter Validation against Drug-Resistant Pathogens 🦠💡
  2. Strategically Engineered Au(I) Complexes for Orchestrated Tumor Eradication: Chemo-Phototherapy & Immunogenic Cell Death 🧬💀
  3. A One-Two Punch Targeting Reactive Oxygen Species and Fibril: Rescuing Alzheimer’s Disease 🧠⚡
  4. Construction of Interlayer Coupling Diatomic Nanozyme with Peroxidase-Like & Photothermal Activities for Efficient Synergistic Antibacteria ⚙️🔥
  5. Elaborately Engineered Au(I)-Based AIEgens: Robust & Broad-Spectrum Elimination Abilities Toward Drug-Resistant Bacteria 🦠🌟
  6. A New Strategy to Elevate Absorptivity of AIEgens for Intensified NIR-II Emission and Synergized Multimodality Therapy 🌈💉
  7. A Brain-Targeting NIR-II Ferroptosis System: Effective Visualization and Oncotherapy for Orthotopic Glioblastoma 🧠🛑
  8. A Novel Drug Susceptibility Testing AIEgen with Spatiotemporal Resolved Progress-Reporting for Therapy of Drug-Resistant Tumors 💊🔬
  9. Aggregation-Induced Conversion from TADF to Phosphorescence of Gold(I) Complexes with Millisecond Lifetimes 💫💰
  10. Novel Quinolizine AIE System: Visualization of Molecular Motion and Tailoring for Biological Application 🔬🧬

Conclusion:

Jing Zhang’s contributions to materials science and biomedicine through innovative luminescent technologies make him a strong candidate for the Best Researcher Award. His research is not only academically enriching but also holds immense promise for future healthcare applications. By continuing his multidisciplinary research, he can further solidify his position as a key figure in both academia and industry.

 

 

 

Mohamed Sadek BACHENE | Microbial Cell Biology | Best Innovation Award

Assoc. Prof. Dr. Mohamed Sadek BACHENE | Microbial Cell Biology | Best Innovation Award

Assoc. Prof. Dr. Mohamed Sadek BACHENE , Institute of Veterinary Sciences at the University of Médéa , Algeria

Dr. Mohamed Sadek Bachene is a distinguished veterinarian and academic from Algeria, born on November 26, 1984, in Medea. He holds extensive experience in veterinary medicine, academic teaching, and scientific research. Bachene has contributed to numerous scientific publications and has presented at international conferences. He is a recognized educator and supervisor in the field of veterinary science, particularly in histology, animal physiology, and pathology. With a strong background in veterinary sciences, Bachene has made significant contributions to the study of coccidiosis in rabbits and broiler chickens. He is highly active in the development of veterinary education and scientific research in Algeria, earning recognition for his innovation and academic leadership.

Publication Profile:

Scopus

Strengths for the Award:

Dr. Mohamed Sadek Bachene’s work stands out for its deep focus on veterinary parasitology, particularly in combating coccidiosis in rabbits and broiler chickens. His innovative research on vaccine trials for Eimeria magna and other parasites in Algerian local rabbits has made significant strides in the prevention of coccidiosis. His published studies and presentations at international conferences highlight the practical applications of his work in veterinary medicine, especially in local farming contexts. Bachene’s ability to combine academic teaching, research, and practical veterinary practice demonstrates a holistic approach that benefits both the academic and professional veterinary communities.

Areas for Improvement:

While Dr. Bachene has made substantial contributions, there is potential for growth in collaborative, interdisciplinary research. Engaging in more international partnerships or joining larger research consortia could increase the scope of his work. Additionally, a greater emphasis on the long-term environmental and socio-economic impacts of his research in rural areas could further strengthen the relevance of his work to both the veterinary and agricultural industries.

Education:

Dr. Mohamed Sadek Bachene holds a Ph.D. in Veterinary Sciences (2013–2019) from ENSV and a Magister degree (2009–2013) in Veterinary Sciences with a specialization in breeding and pathology of backyard animals. His academic journey is complemented by short-term internships at Beijing Agricultural University, focusing on PCR and sequencing of parasite genetic material. Additionally, Bachene completed a university accreditation in Veterinary Sciences (2019–2021). He has excelled in both research and practical application, contributing to significant advancements in the study of animal health and pathology.

Experience:

Dr. Bachene’s professional experience spans from private veterinary practice in 2011 to prominent academic roles, including teaching at Blida and Médéa Universities. He has served as a Teacher-Assistant at YAHIA FARES Médéa University and held a leadership position as Co-head of the Department responsible for graduation and pedagogy (2016–2019). In addition, he actively participated in university governance through memberships in administrative councils and scientific commissions. His administrative and academic leadership roles have shaped veterinary education and research within the university system.

Research Focus:

Dr. Bachene’s research is focused on veterinary parasitology, with a particular interest in coccidiosis in rabbits and poultry. He has conducted extensive studies on Eimeria species, exploring their pathogenicity, prevalence, and potential vaccination strategies. His work in the field of veterinary medicine includes the development of experimental vaccines and the study of parasite genetics using molecular techniques. Bachene’s research aims to improve animal health management practices, specifically in rural and agricultural settings, and to contribute to the overall betterment of veterinary care in Algeria.

Publications Top Notes:

  • 2018: “A vaccination trial with a precocious line of Eimeria magna in Algerian local rabbits” 🐇💉
  • 2018: “Prevalence of coccidian infection in rabbit farms in North Algeria” 🐇🔬
  • 2019: “Prevalence of Rabbit Coccidia in Medea Province, Algeria” 🐇📊
  • 2021: “Vaccination of Algerian Local Rabbits with Precocious Strains of Eimeria magna and Eimeria media” 🐇💉
  • 2025: “Prevalence of coccidiosis in broiler chickens in Medea, Algeria” 🐔🔬

Conclusion:

Dr. Mohamed Sadek Bachene is highly deserving of the Research for Best Innovation Award due to his exceptional work in veterinary parasitology, his innovation in vaccine development, and his commitment to improving animal health and farming practices in Algeria. His active role in education, research, and professional development in veterinary science makes him an outstanding candidate. Enhancing global collaborations and focusing on sustainable, long-term impact could further amplify the influence of his research.