Chenlong YANG | Cancer Cell Biology | Best Researcher Award

Prof. Chenlong YANG | Cancer Cell Biology | Best Researcher Award

Prof. Chenlong YANG, Peking University Third Hospital, China

Dr. Chenlong Yang, M.D., Ph.D., is an accomplished neurosurgeon and research associate professor at the Department of Neurosurgery, Peking University Third Hospital. With over 15 years of clinical and research experience, he specializes in neuro-oncology, spinal neurosurgery, and translational neuroscience. Dr. Yang earned his M.D. from Shandong University and his Ph.D. in Neurological Surgery from Capital Medical University. He has trained and worked in prestigious institutions including Beijing Tiantan Hospital and the State Key Laboratory of Vascular Homeostasis and Remodeling. He has contributed significantly to advancements in brain tumor diagnostics, neuroimmunology, and surgical innovations, with numerous high-impact publications. Recognized internationally, he frequently presents at top neurosurgical conferences such as EANS and the Japan-China Neurosurgery Alliance. His research bridges basic science and clinical neurosurgery, aiming to improve surgical precision and therapeutic outcomes. Dr. Yang is also known for his leadership in collaborative, multidisciplinary research teams.

Publication Profile: 

Google Scholar

✅ Strengths for the Award:

  1. 📚 Robust Academic and Clinical Training

    • Earned an M.D. from Shandong University and a Ph.D. in Neurological Surgery from Capital Medical University.

    • Completed clinical training at Beijing Tiantan Hospital, a top-tier neurosurgical institution in China.

  2. 🔬 Multidisciplinary and Translational Research Excellence

    • His research spans neuro-oncology, neuroimmunology, spinal neurosurgery, and advanced neuroimaging.

    • Conducted preclinical work on Alzheimer’s disease models and neuroprotection, along with current research in immune checkpoint therapy and intraoperative imaging.

  3. 📈 High-Impact Publications

    • Over 20 peer-reviewed publications in journals such as Scientific Reports, J Exp Clin Cancer Res, Neurosurgical Review, and Biophysical Journal.

    • His research on chordomas, gliomas, and spinal tumors has significantly contributed to the field.

  4. 🌍 International Recognition

    • Speaker at major international conferences like EANS 2025 and KSNS 2024.

    • Previously awarded a scholarship by the Turkish Neurosurgical Society.

  5. 🤝 Leadership in Collaboration

    • Plays a key role at the Center for Precision Neurosurgery and Oncology and the State Key Laboratory of Vascular Homeostasis and Remodeling, fostering interdisciplinary collaborations across neurosurgery, imaging, and immunotherapy.

  6. 🎯 Focus on Precision and Innovation

    • Pioneering high-resolution MRI techniques, fluorescent intraoperative navigation, and predictive modeling for neurosurgical outcomes.

🔄 Areas for Improvement:

  1. 📊 Independent Research Lead

    • While he has several corresponding author papers, increasing his share of first-author or sole-PI grants would further elevate his research identity.

  2. 🌐 Global Collaborations

    • Though he has spoken at international conferences, expanding collaborative projects with leading global neuroscience centers could amplify impact.

  3. 💡 Technology Commercialization

    • Given his innovation in imaging and diagnostics, pursuing intellectual property rights or translational funding (e.g., for clinical tools or surgical systems) could be a valuable next step.

  4. 📄 Diversification of Research Outputs

    • A few review articles and meta-analyses would strengthen his role as a thought leader and field synthesizer.

📘 Education:

Dr. Yang pursued his foundational medical education at Shandong University, earning an M.D. in Clinical Medicine (2006–2011). This training provided a solid clinical base and early exposure to neurology and internal medicine. He then advanced to a doctoral program at Capital Medical University, Beijing (2011–2017), earning his Ph.D. in Neurological Surgery. During his Ph.D., he received specialized training in neurosurgical techniques and engaged in cutting-edge research, particularly focusing on neuro-oncology and degenerative neural diseases. As part of his early research career, he also worked at the Institute of Neurobiology, Shandong University, investigating neuroprotective agents and Alzheimer’s disease models. Dr. Yang’s academic journey is characterized by rigorous clinical training and scientific inquiry, equipping him with the knowledge and skills essential for bridging the gap between the lab bench and the operating room. His education laid a strong foundation for his future contributions to precision neurosurgery and translational neuroscience.

💼 Experience:

Dr. Yang has over a decade of diversified experience across top medical and research institutions. He currently serves as a Research Associate Professor and Attending Physician at the Department of Neurosurgery, Peking University Third Hospital (2020–present), where he leads several clinical and translational research projects. Prior to this, he completed a postdoctoral fellowship (2017–2020) in the Department of Orthopedics at the same hospital, emphasizing spinal and neuro-oncologic conditions. From 2011 to 2017, he worked as a resident in Neurosurgery at Beijing Tiantan Hospital, one of China’s premier neurosurgical centers, gaining extensive experience in surgical treatments and neurovascular procedures. His roles span clinical surgery, research coordination, and academic instruction. Additionally, he actively contributes to the Center for Precision Neurosurgery and Oncology and the State Key Laboratory of Vascular Homeostasis and Remodeling, leading initiatives to improve patient outcomes through interdisciplinary innovations in neurosurgical care.

🧠 Research Focus:

Dr. Chenlong Yang’s research integrates neurosurgery, oncology, immunology, and biomedical engineering. His primary focus lies in neuro-oncology, with a strong emphasis on chordoma biology, glioma immunotherapy, and molecular diagnostics. He explores immune checkpoint therapies, tumor microenvironment modulation, and the development of predictive models for neurosurgical complications such as postoperative delirium. Dr. Yang is also deeply involved in technological innovation in neurosurgery, investigating intraoperative fluorescence imaging, high-resolution MRI, and minimally invasive spinal techniques. His work on spatial learning, Alzheimer’s models, and neuroprotection during his early career continues to inform his translational research. He collaborates across disciplines, from molecular biologists to radiologists, aiming to build precision-guided therapeutic frameworks. His research is extensively published in journals like Scientific Reports, J Exp Clin Cancer Res, and Frontiers in Neurology. Through this work, Dr. Yang seeks to advance the standard of care in neurosurgical oncology and promote patient-specific interventions.

📚 Publication Top Notes:

  1. 🧬 SMARCB1 orchestrates cellular plasticity and oncogenic pathways in typical and chondroid chordomas

  2. 🛡️ Cracking Chordoma’s Conundrum: Immune Checkpoints Provide a Potential Modality

  3. 🌱 From glioma gloom to immune bloom: unveiling novel immunotherapeutic paradigms – a review

  4. 💡 Intraoperative fluorescence redefining neurosurgical precision

  5. 🧠 The evolution and integration of technology in spinal neurosurgery: A scoping review

  6. 👁️ Single-cell transcriptomic atlas of aging macaque ocular outflow tissues

  7. 🧮 Risk stratification and predictive modeling of postoperative delirium in chronic subdural hematoma

  8. 📶 Characteristic fingerprint spectrum of α-synuclein mutants on terahertz time-domain spectroscopy

  9. 🐒 Normative profile of retinal nerve fiber layer thickness in cynomolgus monkeys

  10. 🌀 Accurate diagnosis and treatment of sacral meningeal cysts using high-resolution MRI

  11. 🧪 Intraspinal hemangioblastomas: analysis of 92 cases in a single institution

🏁 Conclusion:

Dr. Chenlong Yang exemplifies the ideal profile of a cutting-edge clinician-scientist, merging neurosurgical precision with immunological insight and technological innovation. His commitment to patient-centered research, consistent academic output, and recognition on international platforms underscores his eligibility for the Best Researcher Award. With continued growth in independent leadership and global research impact, Dr. Yang is not only a deserving candidate now but is poised to become a prominent global figure in neurosurgical research in the years to come.

Dalia Saleh | Cancer Cell Biology | Innovative Research Award

Prof . Dalia Saleh | Cancer Cell Biology | Innovative Research Award

Prof . Dalia Saleh | National Research Centre | Egypt

Dr. Dalia Osama Abd El Fattah Saleh is a distinguished pharmacologist with over two decades of experience in experimental pharmacology and drug development. She holds a Ph.D. in Pharmacology from Cairo University and currently serves as a Professor at the National Research Centre in Cairo, Egypt. Dr. Saleh has contributed to numerous high-impact scientific journals and has led pioneering work in the areas of metabolic disorders, drug safety, and vascular pharmacology. Her multidisciplinary collaborations and continuous professional development from institutions like King’s College London demonstrate her dedication to excellence in research and education. She is also recognized for her commitment to academic instruction and quality assurance, having served as a Quality Assurance Director. Her work bridges scientific discovery and real-world therapeutic applications, making her a strong candidate for innovation-focused research awards.

publication profile:

scopus

Strengths for the Award:

  1. Robust Academic Background:
    Dr. Saleh holds a Ph.D. in Pharmacology from Cairo University and has a long-standing academic and research career in pharmacology and drug development. Her doctoral and master’s theses reflect a strong foundation in vascular pharmacology, metabolic disorders, and endocrine influence—fields of enduring relevance.

  2. Consistent Research Productivity:
    Her recent publication record (2022–2024) is prolific and impactful, with studies published in high-visibility journals such as Scientific Reports, Biochemistry and Cell Biology, Naunyn-Schmiedeberg’s Archives of Pharmacology, and Environmental Science and Pollution Research. Her work covers cutting-edge pharmacological topics, including:

    • AMPK/mTOR signaling pathways,

    • Neuroprotection and anti-inflammatory mechanisms,

    • Herbal and synthetic compounds in disease modulation,

    • Hepatic encephalopathy, diabetic nephropathy, and cystitis models.

  3. Interdisciplinary and Translational Approach:
    Dr. Saleh bridges basic pharmacological research with clinical relevance. Her investigations into molecular pathways (e.g., NF-κB, PI3K/Akt, SIRT-1) are grounded in disease models, thus demonstrating translational potential. Her inclusion of both natural and synthetic agents further adds diversity and innovation to her research.

  4. Capacity Building and International Exposure:
    She has participated in Continuing Professional Development modules at King’s College London, emphasizing drug safety, statistics, and ethics—key areas in modern drug development. This international engagement underscores her commitment to staying updated and aligned with global standards.

  5. Institutional Contribution and Leadership:
    As a Professor and former Quality Assurance Director at the National Research Centre (NRC), she has contributed to institutional excellence, including achieving ISO 9001/2008 certification. These roles reflect her leadership, organizational, and strategic planning skills.

Areas for Improvement:

  1. Principal Investigator Leadership:
    While her name appears consistently in multi-author studies, further highlighting her role as the principal investigator (PI) or corresponding author could strengthen her case for innovation leadership.

  2. Patents or Product Development:
    There is no mention of patents or direct product development based on her findings. Translating research into tangible therapeutics or clinical trials would significantly elevate her eligibility for innovation-specific awards.

  3. Global Collaborations and Grants:
    Although she has participated in international seminars, active global collaborations or leading major international grants/projects would further establish her as a global innovator.

  4. Public/Industry Impact:
    While the academic impact is strong, showcasing industry partnerships or policy-level influence (e.g., contributions to clinical guidelines or regulatory science) would align more directly with innovation awards that emphasize practical application.

🎓 Education Summary :

Dr. Dalia Saleh completed her higher education at Cairo University’s Faculty of Pharmacy, where she earned her Master of Science in Pharmacology in 2009 and Doctor of Philosophy in Pharmacology in 2012. Her M.Sc. thesis focused on the vascular and biochemical effects of rosiglitazone in diabetic rats, reflecting early interests in metabolic pharmacology. Her Ph.D. expanded on this foundation by exploring estrogen’s potential role in managing vascular changes related to insulin resistance. Both theses demonstrated robust experimental designs and contributed new insights into the interplay between hormonal and metabolic pathways in disease models. Dr. Saleh has since built on this academic background with advanced training in clinical drug development, safety, and biostatistics at King’s College London in 2023, indicating a continued commitment to integrating modern pharmaceutical science and translational research into her academic portfolio. This rich educational foundation underpins her success as a researcher and educator.

🔬 Research Focus :

Dr. Saleh’s research focuses on experimental pharmacology, with a special interest in metabolic diseases, drug-induced toxicities, inflammation, and vascular pharmacology. Her studies frequently involve animal models to investigate the mechanisms of drug action and to evaluate the protective or therapeutic roles of natural products and synthetic compounds. A recurring theme in her work is exploring the modulation of signaling pathways like AMPK, NF-κB, PI3K/mTOR, and Nrf2 in the context of oxidative stress, inflammation, and cellular apoptosis. She has also studied the role of hormonal influences in disease models, such as estrogen’s effect on insulin resistance. Her research employs modern analytical techniques and integrates molecular biology with pharmacodynamics to derive mechanistic insights. This strong focus on mechanistic pharmacology enhances her work’s relevance in drug development, particularly for conditions such as diabetic complications, hepatic encephalopathy, nephropathy, and chemotherapy-induced toxicities.

📚 Publications Top Note:

  1. 🧪 Eugenol alleviates acrylamide-induced testicular toxicity via AMPK/pAKT/mTOR modulationScientific Reports, 2024

  2. 🧠 Trimetazidine prevents cisplatin neuropathy through AMPK, Nrf2, and NF-κB pathwaysBiochemistry and Cell Biology, 2023

  3. 🔬 Novel chromone-thiazolopyrimidines as TNF-α, IL-6, and PGE2 inhibitorsPolycyclic Aromatic Compounds, 2023

  4. 🚽 Chrysin protects against cyclophosphamide-induced hemorrhagic cystitis via anti-inflammatory signalingChemico-Biological Interactions, 2023

  5. 🧃 Linagliptin & L-arginine synergy in gastric hyperacidity via EP4 receptor upregulationNaunyn-Schmiedeberg’s Archives of Pharmacology, 2023

  6. 🧠 L-arginine reduces thioacetamide-induced hepatic encephalopathy via NF-κB downregulationEnvironmental Science and Pollution Research, 2023

  7. 🌿 Calotropis procera seed oil shows anti-inflammatory and antiparasitic activityArabian Journal of Chemistry, 2022

  8. 🛡️ Olmesartan mitigates diabetic nephropathy via AGE/PKC and TLR4/SIRT-1 pathwaysEuropean Journal of Pharmacology, 2022

  9. 🍃 Plumbago species show anti-fibrotic effects in liver fibrosis rat modelsScientific Reports, 2022

  10. 🫀 Omega-3 combats doxorubicin-induced liver toxicity via Nrf2/PI3K/Akt signalingPending Publication

Conclusion:

Dr. Dalia O. Saleh presents a strong candidacy for the Research for Innovative Research Award, particularly due to her sustained publication record, mechanistic depth in pharmacology, and commitment to professional development and institutional excellence. Her work spans innovative mechanistic explorations and novel therapeutic evaluations, showing real promise in addressing current pharmacological challenges.

Weikuan Gu | Cancer Cell Biology | Best Researcher Award

Prof. Weikuan Gu | Cancer Cell Biology | Best Researcher Award

Prof. Weikuan Gu , UTHSC , United States

Weikuan Gu is a Professor at the University of Tennessee Health Science Center, specializing in biomedical research with a focus on disease modeling, genetic factors influencing health, and drug efficacy. After earning his MS and Ph.D. from Cornell University, he worked on eye diseases, osteoporosis, and genetics before joining UTHSC in 2002. His contributions in AI applications for biomedical research are noteworthy. He has developed the Principal Law of Lifespan (PLOSP) theory and has been recognized for his leadership in various international collaborative projects. With a significant role in numerous NIH-funded studies, his research continues to push boundaries in understanding disease mechanisms and therapeutics.

Publication Profile: 

Google Scholar

Strengths for the Award:

  1. Extensive Research Experience: Professor Weikuan Gu has over two decades of experience in biomedical research, demonstrating expertise across a wide array of disease models, drug efficacy, and genetic factors influencing health. His work spans a variety of high-impact fields such as ophthalmology, osteoporosis, arthritis, and genomics, showcasing a strong commitment to advancing understanding in multiple medical domains.

  2. Innovative Research Leadership: Professor Gu has been instrumental in leading and contributing to groundbreaking research, including his development of the Principal Law of Lifespan (PLOSP). His ability to innovate, especially in applying AI to biomedical research, positions him at the forefront of cutting-edge science and technology.

  3. Funded Projects & International Collaborations: He has secured substantial funding for his projects, totaling millions of dollars, and has led many high-profile international collaborations. This speaks to the global relevance and potential impact of his work, as well as his ability to manage large-scale research initiatives.

  4. Research Output and Citations: With 175 published scientific papers and multiple accepted articles in prestigious journals such as Cancer Letters and Ecotoxicology and Environmental Safety, his research continues to have a significant impact on the scientific community. His most recent work on AI applications and its implications for public health and disease diagnosis are particularly notable.

  5. Contribution to Education and Training: Professor Gu has played a key role in training future researchers, as evident from his leadership in the Gene Discovery Microarray Core at UTHSC and his involvement in several research education collaborations internationally. His contributions to scientific training are essential for developing the next generation of researchers.

Areas for Improvement:

  1. Broader Public Outreach: While Professor Gu’s research has made significant contributions to the scientific community, there is room to enhance the visibility of his work among broader audiences, including policy makers, healthcare professionals, and the general public. Public engagement with his AI-focused research could improve the real-world application of his findings, especially in public health.

  2. Interdisciplinary Collaboration: Although his collaborations are already diverse, fostering even more interdisciplinary collaborations with experts from areas like data science, engineering, and social sciences could expand the scope of his research, especially in areas like AI and healthcare.

Education:

Dr. Gu completed his MS and Ph.D. from Cornell University, where he specialized in molecular genetics. His academic journey focused on genetic disorders, particularly in disease modeling and understanding complex genetic mechanisms. His research provided foundational insights into eye diseases and osteoporosis, leading to his early work at Loma Linda University and later at the University of Tennessee Health Science Center. His vast academic knowledge enables him to merge genetic research with cutting-edge technologies, including AI applications in biomedical research, paving the way for transformative healthcare solutions.

Experience:

Dr. Weikuan Gu has a rich career that spans over two decades in biomedical research. His early work at Loma Linda University involved osteoporosis and genetic studies in human and mouse models. Since joining the University of Tennessee Health Science Center in 2002, his research expanded to disease modeling, drug efficacy, and the role of genetics in health. He has been a principal investigator and co-investigator in numerous NIH-funded projects, specializing in genetic factors influencing diseases like osteoarthritis, fibrotic diseases, and stroke. Additionally, he is involved in AI-based research, advancing the integration of AI in biomedical research methodologies.

Research Focus:

Dr. Weikuan Gu’s research is centered on understanding disease mechanisms and therapeutic strategies, with a focus on genetic and molecular factors. His work spans glaucoma therapy, fibrotic diseases, and AI in biomedical research. He is the lead on various NIH-funded projects, investigating genetic regulation in conditions like osteoarthritis and stroke. One of his innovative contributions is the Principal Law of Lifespan (PLOSP), a theory aimed at understanding the aging process. His multidisciplinary approach, combining traditional genetic research with modern technologies such as AI, positions him at the forefront of cutting-edge biomedical research.

Publications Top Notes:

  1. “Generating Research Hypotheses to Overcome Key Challenges in the Early Diagnosis of Colorectal Cancer – Future Application of AI” 🧬
  2. “Alarm: Retracted Articles on Cancer Imaging Are Not Only Continuously Cited by Publications but Also Used by ChatGPT to Answer Questions” 💻
  3. “Evaluation of the Potential Value of Artificial Intelligence (AI) in Public Health Using Fluoride Intake as the Example” 🤖

Conclusion:

Professor Weikuan Gu is an exceptionally qualified candidate for the Best Researcher Award. His extensive experience, leadership in innovative research, impressive body of published work, and commitment to advancing both scientific discovery and education make him a standout candidate. While there are opportunities for further enhancing public outreach and expanding interdisciplinary collaborations, his ongoing contributions to AI in biomedicine and genetic research firmly establish him as a leader in his field.