Feng-Zhu Wang | Host-Pathogen Interactions | Best Researcher Award

Assoc. Prof. Dr. Feng-Zhu Wang | Host-Pathogen Interactions | Best Researcher Award

Assoc. Prof. Dr. Feng-Zhu Wang , Sun Yat-sen University , China

Dr. Feng-Zhu Wang is an Associate Professor at the School of Life Science, Sun Yat-sen University, China. He earned his Ph.D. in Botany from the same institution under Prof. Shi Xiao and has focused his research on plant immunity and mycorrhizal symbiosis. After his Ph.D., Dr. Wang pursued postdoctoral research with Prof. Jian-Feng Li, contributing significantly to CRISPR-based gene editing and plant-pathogen interactions. With over 7 co-first-author publications and experience as a corresponding author, he demonstrates both innovation and leadership in plant biology. His research has been published in esteemed journals, including Nature Communications and Trends in Plant Science. Now leading his lab, Dr. Wang is committed to advancing agricultural biotechnology through molecular tools and sustainable practices. His achievements in plant immunity, stress tolerance, and CRISPR tools place him as a key figure in contemporary plant science.

Publication Profile:

Scopus

✅ Strengths for the Award:

  • 🧬 Extensive expertise in plant immunity and symbiotic relationships, critical for sustainable agriculture.

  • 🧪 Consistent high-impact publications in journals like Nature Communications and Trends in Plant Science.

  • 💡 Developed innovative tools like dual-function CRISPR systems, highlighting technological creativity.

  • 👩‍🏫 Strong academic foundation with continuous roles in postdoc, research, and teaching, demonstrating leadership and growth.

  • ✍️ Serves as corresponding or co-first author in multiple works, showing project ownership and contribution depth.

🔍 Areas for Improvement:

  • 🌍 Could benefit from international collaborations to increase global visibility.

  • 🎓 Expanding mentorship activities and outreach could enhance influence on future scientists.

  • 🗣️ More presence in conferences or workshops would elevate public engagement and field leadership.

🎓 Education:

Feng-Zhu Wang completed both his undergraduate and doctoral studies at Sun Yat-sen University, China, a prestigious institution known for life science research. He earned a B.Sc. in Biotechnology between 2009 and 2013, where he developed foundational knowledge in molecular biology and genetics. His Ph.D., pursued from 2013 to 2018 in the Department of Botany under Prof. Shi Xiao, focused on plant stress responses, particularly involving immunity and symbiosis. His educational journey emphasized hands-on lab techniques, scientific writing, and experimental design. Through intensive academic training and mentorship, Dr. Wang cultivated skills in gene regulation, CRISPR-Cas systems, and plant-microbe interactions. This solid academic foundation provided the groundwork for his impactful research contributions and prepared him for advanced exploration into genetic mechanisms driving plant resistance to both biotic and abiotic stresses.

💼 Experience:

Dr. Feng-Zhu Wang’s academic career is firmly rooted in Sun Yat-sen University, where he has continuously advanced through roles in education and research. After completing his Ph.D. in 2018, he undertook postdoctoral training from 2018 to 2024 under Prof. Jian-Feng Li, focusing on advanced molecular biology tools, plant-pathogen interactions, and CRISPR gene editing. He contributed to developing innovative dual-function CRISPR systems and molecular assays for plant biology. In May 2024, he was appointed Associate Professor in the Department of Biology. His experience spans project leadership, scientific writing, collaboration, and mentoring young researchers. As both a co-first and corresponding author on multiple papers, Dr. Wang demonstrates a proactive role in scientific innovation and dissemination. His experience reflects a seamless integration of research development, experimental practice, and academic progression within one of China’s leading universities.

🔬 Research Focus:

Dr. Wang’s research revolves around two main areas: plant immunity mechanisms and mycorrhizal symbiosis, both crucial to improving plant resilience and productivity. He investigates how plants detect and defend against fungal pathogens through receptor-mediated signaling pathways and how beneficial fungi assist plants in nutrient uptake and stress tolerance. His work also dives deep into genetic engineering using CRISPR-Cas systems, developing tools for efficient multigene editing and Cas9-free selection in model organisms like Arabidopsis thaliana. By combining bioinformatics, molecular genetics, and cell biology, Dr. Wang aims to understand how immune responses are regulated and how plants can balance defense and symbiosis. This dual focus supports sustainable agriculture and provides insight into fundamental plant biology. His contributions are not only theoretical but also technological, offering tools that can be used in practical breeding and crop enhancement strategies worldwide.

📚 Publications Top Notes:

  1. 🧪 Nepenthes chitinase NkChit2b-1 confers broad-spectrum resistance to chitin-containing pathogens and insects in plantsAdvanced Biotechnology, 2025

  2. 🧬 A dual-function selection system enables positive selection of multigene CRISPR mutants and negative selection of Cas9-free progeny in ArabidopsisaBIOTECH, 2024

  3. 🔍 Hidden prevalence of deletion-inversion bi-alleles in CRISPR-mediated deletions of tandemly arrayed genes in plantsNature Communications, 2023

  4. 🍄 Hide-and-seek: Chitin-triggered plant immunity and fungal counterstrategiesTrends in Plant Science, 2020

  5. 🔗 Split Nano luciferase complementation for probing protein-protein interactions in plant cellsJournal of Integrative Plant Biology, 2020

  6. 🌾 Alternative splicing and translation play important roles in hypoxic germination in riceJournal of Experimental Botany, 2019

  7. 💧 Natural variation in the promoter of rice Calcineurin B-like Protein10 affects flooding tolerance during seed germination among rice subspeciesPlant Journal, 2018

  8. ☣️ OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in riceFrontiers in Plant Science, 2017

🔚 Conclusion:

Dr. Feng-Zhu Wang stands out as a promising and accomplished researcher. With an impressive portfolio of impactful publications and strong academic roots in plant biology, they are highly suitable for the Best Researcher Award. A few enhancements in outreach and collaboration could further elevate their global scientific profile.

Allegra Wundersitz | Signal Transduction Mechanisms | Young Scientist Award

Mrs. Allegra Wundersitz | Signal Transduction Mechanisms | Young Scientist Award

Mrs. Allegra Wundersitz , RWTH Aachen University, Molekulare Ökologie der Rhizosphäre , Germany

Allegra Wundersitz is a passionate molecular biologist currently pursuing her PhD at RWTH Aachen University, Germany, in the group of Molecular Ecology of the Rhizosphere. Her research delves into the molecular mechanisms of plant oxygen sensing and the regulatory role of acyl-CoA-binding proteins (ACBPs) in stress signaling. Allegra has been recognized for her academic excellence, receiving the ISPA Poster Award and the Best Botanic Master’s Thesis Award from the German Society for Plant Sciences (DBG). With expertise in cloning, yeast-two-hybrid, luciferase complementation, and computational modeling, she seamlessly integrates biochemical and molecular approaches. Allegra actively collaborates with interdisciplinary teams, bridging plant physiology, structural biology, and molecular dynamics. Her commitment to research and mentoring makes her a promising young scientist aiming to contribute not only to fundamental plant science but also to translational applications in health and agriculture.

Publication Profile:

Orcid

✅ Strengths for the Award:

  • Innovative Research Focus: Allegra’s work on acyl-CoA-binding proteins (ACBPs) in plant oxygen sensing and stress signaling demonstrates high originality. Her approach of integrating protein biochemistry, gene regulation, and computational modeling is both novel and impactful.

  • Early Recognition: Despite being in the early stages of her career, she has received notable honors, including the ISPA Poster Award and the Best Master’s Thesis Award (DBG)—highlighting the quality and relevance of her work.

  • Interdisciplinary Collaboration: She engages with experts in molecular dynamics and structural biology, enriching her research with advanced modeling of protein mutations—showing strong collaborative and technical competencies.

  • Mentorship & Leadership: Supervising undergraduate students showcases her commitment to academic development and science communication.

  • Publication Record: Her first peer-reviewed article in New Phytologist indicates strong potential for growing her scientific influence.

🧩 Areas for Improvement:

  • Professional Engagement: Joining relevant scientific societies or organizations could enhance her visibility, offer networking opportunities, and provide access to grants or awards.

  • Industry Exposure: While her current focus is on basic science, even limited engagement with applied research or biotechnology partnerships could broaden the translational scope of her work.

  • Publication Volume: As her research matures, expanding her publication record beyond reviews into primary experimental studies will strengthen her academic profile.

🎓 Education:

Allegra Wundersitz holds a Master’s degree in Plant Molecular Biology, where her thesis on acyl-CoA-binding proteins (ACBPs) earned national recognition by the German Society for Plant Sciences in 2024. She is currently a PhD student at RWTH Aachen University, Germany, specializing in the molecular ecology of the rhizosphere. Her academic training spans core fields such as structural biochemistry, plant physiology, and gene regulation. Through hands-on learning and international workshops, she has developed technical proficiency in protein interaction assays, biosensor design, and in silico modeling. Her education emphasizes a multidisciplinary approach, blending experimental and computational biology. She has also supervised undergraduate research projects, further strengthening her academic leadership. Allegra’s educational journey reflects her deep curiosity for understanding molecular mechanisms in plant biology and their broader implications.

🧪 Experience:

Allegra’s experience is rooted in academic molecular biology research. During her Master’s and now as a PhD candidate, she has completed two significant research projects: developing plant-based oxygen biosensors and exploring the role of ACBPs in gene regulation. Her current PhD project investigates how ACBPs act as acyl-CoA receptors, mediating responses to oxygen and stress in plants. She employs techniques such as yeast two-hybrid assays, luciferase complementation, cloning, and molecular modeling. Allegra has also collaborated with experts in molecular dynamics, including Prof. Maria Fyta and Dr. Chandan Das, to simulate structural effects of ACBP mutations. She has presented her work at international conferences and received a prestigious poster award at ISPA. Allegra is gaining valuable teaching experience through undergraduate supervision, making her a well-rounded early-career scientist. Though she has not yet worked in industry, her work holds potential translational value in agriculture and health.

🔍 Research Focus:

Allegra’s research centers on the role of acyl-CoA-binding proteins (ACBPs) as key molecular players in plant oxygen sensing and stress signaling. She investigates how ACBPs function as acyl-CoA receptors and modulate gene expression through dynamic protein-protein interactions. Her goal is to uncover how lipid signals like acyl-CoAs are translated into physiological responses under stress conditions. Using a combination of experimental techniques—such as cloning, luciferase complementation assays, yeast-two-hybrid screens—and computational molecular dynamics, she deciphers the structural and functional aspects of ACBP interactions. Her research not only expands fundamental plant molecular biology but also contributes insights with potential applications in crop resilience, metabolic regulation, and even human health, given ACBPs’ links to cancer and metabolic disorders. Through interdisciplinary collaboration, Allegra aims to bridge structural biochemistry and plant physiology to understand how cells adapt to fluctuating oxygen and energy levels.

📚 Publications Top Notes:

  • 🧬 Acyl-CoA-binding proteins: bridging long-chain acyl-CoA metabolism to gene regulationTansley Insight, New Phytologist (April 22, 2025)

🧾 Conclusion:

Allegra Wundersitz is a highly promising young researcher who combines technical excellence, creativity, and interdisciplinary integration in her approach to plant molecular biology. Her foundational work on ACBPs not only deepens our understanding of plant stress responses but also hints at broader implications in health and metabolic research. With her trajectory and dedication, she is an ideal candidate for the Young Scientist Award, and this recognition would further support her impactful scientific journey.

Guobin Li | Plant Cell Biology | Best Researcher Award

Dr. Guobin Li | Plant Cell Biology | Best Researcher Award

Dr. Guobin Li , Northwest A&F University , China

Guobin Li, Ph.D., is an Assistant Professor at Northwest A&F University, specializing in agricultural science. With a Ph.D. from Huazhong Agricultural University, Dr. Li’s research focuses on understanding the molecular mechanisms of tomato fruit development and its responses to abiotic stress factors like temperature and salinity. He has a strong background in functional genomics, horticultural biotechnology, and the role of environmental stress on crop quality. Dr. Li’s contributions to the scientific community are evident in his numerous publications in esteemed journals, reflecting his passion for advancing agricultural sustainability and improving crop resilience. He is particularly interested in utilizing advanced techniques to unravel the molecular intricacies of plant biology, with a goal to enhance both the quality and yield of horticultural crops under changing environmental conditions.

Publication Profile: 

Scopus

Strengths for the Award:

Dr. Guobin Li is an outstanding candidate for the Best Researcher Award due to his significant contributions to agricultural science, specifically in understanding tomato fruit development and its response to abiotic stress. His research on the molecular mechanisms underlying fruit quality and stress tolerance is highly relevant in the context of global climate change and food security. Dr. Li’s work is well-regarded for its depth and breadth, focusing on functional genomics, plant stress tolerance, and biotechnological applications in horticultural crops. His prolific publication record in high-impact journals, including multiple papers in top-tier plant science journals, demonstrates his ability to advance the field. His recent work on enhancing tomato resistance to temperature and salinity stress showcases his practical applications for improving crop resilience, which is crucial for sustaining agricultural productivity.

Areas for Improvement:

While Dr. Li’s research is impactful, he could further enhance his visibility in interdisciplinary research areas, such as sustainable agriculture practices and global food systems. Collaborations with other experts in the field of crop management, environmental science, and agronomy could help broaden the scope of his research and make a greater societal impact. Additionally, a deeper focus on the translational aspect of his work—such as developing tangible solutions for farmers—would ensure that his findings reach a wider audience, benefiting practical agriculture directly.

Education:

Dr. Guobin Li earned his Ph.D. in Agricultural Science from Huazhong Agricultural University in 2021, focusing on plant biology and the molecular mechanisms underpinning fruit development and stress response in horticultural crops. Throughout his academic journey, Dr. Li was deeply involved in both theoretical and practical aspects of plant molecular biology, specifically in relation to tomato. His doctoral research laid the foundation for his current work at Northwest A&F University, where he continues to explore innovative solutions to improve crop resilience against environmental stress. Dr. Li’s educational background is complemented by his strong research foundation, making him a key figure in the study of abiotic stress tolerance and fruit development in plants.

Professional Experience:

Dr. Guobin Li currently serves as an Assistant Professor at Northwest A&F University. He is leading research on tomato fruit development and exploring how abiotic stressors, such as temperature and salinity, affect crop growth and fruit quality. Dr. Li’s expertise in molecular biology and genomics has allowed him to make significant advancements in understanding the genetic and physiological responses of tomatoes to environmental stress. Prior to his current role, Dr. Li completed his Ph.D. at Huazhong Agricultural University, where he developed foundational research in plant stress tolerance. His professional experience extends to publishing numerous articles in high-impact journals and collaborating on international research projects that aim to improve crop resilience. Dr. Li is dedicated to applying his knowledge to practical agricultural applications, ensuring that his work benefits both researchers and farmers in enhancing agricultural productivity and sustainability.

Research Focus:

Dr. Guobin Li’s research is centered on the molecular mechanisms that govern tomato fruit development and its ability to respond to environmental stress factors, such as temperature extremes and salinity. He investigates how abiotic stress impacts plant growth and quality, focusing particularly on the genetic and biochemical pathways involved in these processes. His research also delves into functional genomics and biotechnological applications, with a primary goal of improving the resilience of horticultural crops through molecular breeding. Dr. Li is also interested in the role of ethylene and other signaling molecules in fruit ripening and quality. By understanding these mechanisms, his work aims to optimize fruit yield, quality, and stress tolerance, particularly under adverse growing conditions. His research contributes to the broader field of agricultural sustainability, as it helps address challenges posed by climate change and environmental stressors on food production systems.

Publications Top Notes:

  1. “L2, a chloroplast metalloproteinase, regulates fruit ripening by participating in ethylene autocatalysis under the control of ERFs” 🌿🍅

  2. “Tomato DC1 domain protein SlCHP16 interacts with the 14–3-3 protein TFT12 to regulate flower development” 🌸🍅

  3. “NF-Y plays essential roles in flavonoid biosynthesis by modulating histone modifications in tomato” 🍇🍅

  4. “Genome-wide analysis of the dc1 domain protein gene family in tomatoes under abiotic stress” 🌍🍅

  5. “Bacillus methylotrophicus improves tomato resistance to low temperature stress and fruit quality” ❄️🍅

  6. “SlWRKY80-mediated JA pathway positively regulates tomato resistance to saline-alkali stress” 🌱🌊

  7. “Over-expression of spermidine synthase 2 (SlSPDS2) improves tomato tolerance to saline-alkali stress” 🌿🌊

  8. “SlCHP16 promotes root growth and enhances saline-alkali tolerance of tomato” 🌱💧

Conclusion:

Dr. Guobin Li is a highly qualified and deserving candidate for the Best Researcher Award. His work on tomato fruit development, stress response mechanisms, and the application of functional genomics in horticultural crops has profound implications for sustainable agriculture. By addressing both the basic science and practical challenges of crop resilience, Dr. Li’s research makes a vital contribution to improving global food security. His academic achievements and research productivity place him in a strong position for this prestigious recognition. With slight improvements in interdisciplinary collaboration and real-world application, Dr. Li has the potential to make even more substantial contributions to the field of agricultural research.

Hanny Chauhan | Plant molecular biology | Best Scholar Award

Mr Hanny Chauhan | Plant molecular biology | Best Scholar Award

SRF at  Panjab University, India

Hanny Chauhan is currently a Ph.D. Scholar in the Department of Biotechnology at Panjab University, Chandigarh, India. Her research focuses on genome editing using CRISPR/Cas9 technology, transgenics, and plant molecular biology, with a specific interest in improving traits in Solanum tuberosum (potato).

 

Profile:

Professional Achievements:

📚 Publications: Authored multiple papers in reputed journals like Life and PeerJ, exploring topics from CRISPR vectors to gene expression under stress conditions. 🌍 Collaborations: Collaborated with researchers from institutions including the University of Minnesota and INSA, Chandigarh. 🏆 Recognition: Nominated for the Best Research Scholar Award for contributions in plant molecular biology.

Academic Focus:

Hanny Chauhan is dedicated to advancing plant biotechnology and genome editing techniques, particularly in Solanum tuberosum (potato). Her research focuses on CRISPR/Cas9-mediated genome editing, aiming to enhance disease resistance and nutrient content in plants.

Research Focus: Plant Molecular Biology

Hanny Chauhan’s research revolves around leveraging cutting-edge techniques like CRISPR/Cas9 and transgenics to advance plant molecular biology. Specifically, she investigates genetic mechanisms in Solanum tuberosum (potato), aiming to enhance traits crucial for agriculture and sustainability.

 

Publication:
  • Compendium of Plant-Specific CRISPR Vectors and Their Technical Advantages
    • Year: 2021
  • Rapid and Efficient CRISPR/Cas9-Mediated Genome Editing in Potato via Hairy Root Induction
    • Year: 2023
  • Prevention of Postoperative Acute Lung Injury (ALI) – The Anaesthetist Role
    • Year: 2015
  • Genome-Wide Identification of 2-Oxoglutarate and Fe (II)-Dependent Dioxygenase Family Genes and Their Expression Profiling under Drought and Salt Stress in Potato
    • Year: 2023
  • Genome-Wide Identification and Expression Analysis of the Broad-Complex, Tramtrack, and Bric-à-Brac Domain-Containing Protein Gene Family in Potato
    • Year: 2024
  • CRISPR/Cas9 Edited StbHLH47 Lines Exhibit Altered Expression Profiling of Iron Regulating Genes and Increased Iron Content in Solanum tuberosum
    • Year: 2024
  • Genome-Editing Advances for Disease Resistance in Plants
    • Year: 2024