Amir Zarebkohan | Nanomedicine | Best Researcher Award

Dr. Amir Zarebkohan | Nanomedicine | Best Researcher Award

Tabriz University of Medical Sciences | Iran

Dr. Amir Zarebkohan’s research focuses on the development of advanced nanomedicine strategies for targeted drug delivery and cancer therapy. His work integrates medical nanotechnology and physiology to design innovative nanosystems capable of precise drug transport within biological environments. He specializes in smart targeted delivery platforms, nano–bio interface studies, and nano chemo-immunotherapy approaches aimed at improving therapeutic efficacy while minimizing systemic toxicity. His current projects involve the co-delivery of cyclophosphamide and HLH peptide using D8 and RIVAP-modified chitosan nanoparticles, engineered to respond to the redox conditions of the tumor microenvironment for glioma targeting in rat models. Additionally, he is developing chitosan-based nanoparticles containing dendrimers loaded with cyclophosphamide and sitagliptin, further functionalized with targeting ligands for enhanced delivery efficiency. His research emphasizes translational applications of nanotechnology in oncology and the exploration of biocompatible polymeric carriers for controlled and localized drug release. Through his studies, Dr. Zarebkohan contributes to advancing nano-chemoimmunotherapeutic platforms that bridge the gap between nanoscience and clinical medicine, offering potential breakthroughs in the treatment of complex and resistant cancers.

Profiles:  Google Scholar | Scopus | Orcid

Featured Publications:

Zarebkohan, A., & colleagues. (2024). Enhanced docetaxel therapeutic effect using dual targeted SRL-2 and TA1 aptamer conjugated micelles in inhibition Balb/c mice breast cancer model. Scientific Reports, 14, Article 75042.

Zarebkohan, A., & colleagues. (2024). Discovery of a novel dual targeting peptide for human glioma: From in-silico simulation to acting as targeting ligand. Advanced Pharmaceutical Bulletin, 14, Article 033.

Zarebkohan, A., & colleagues. (2023). Dual targeting salinomycin-loaded smart nano-micelles for enhanced accumulation and therapeutic outcome in breast cancer. International Journal of Pharmaceutics, 123095.

Zarebkohan, A., & colleagues. (2023). CDX-modified chitosan nanoparticles remarkably reduce therapeutic dose of fingolimod in the EAE model of mice. International Journal of Pharmaceutics, 122815.

Zarebkohan, A., & colleagues. (2023). Exosomal transmission of viruses, a two-edged biological sword. Cell Communication and Signalling, 21, Article 37.

Zhihua Wu | Allergen | Best Researcher Award

Mr. Zhihua Wu | Allergen | Best Researcher Award

Nanchnag University | China

Dr. Zhihua Wu is a leading researcher in the field of food science and nanobiotechnology, with a focus on food protein processing, allergen characterization, and functional food development. His work explores the structural and immunological properties of food allergens, particularly those derived from peanuts, soybeans, and almonds, aiming to elucidate mechanisms underlying allergenicity and cross-reactivity. He employs advanced analytical tools such as mass spectrometry, metabolomics, and molecular modeling to investigate how food processing, polyphenol interactions, and roasting alter protein structures and immune responses. Dr. Wu’s recent studies have provided key insights into epitope localization and allergen modification for risk reduction in plant-based foods. His ongoing research projects, funded by major Chinese national programs, include developing safety evaluation and risk mitigation techniques for plant-derived food resources and mapping IgE-binding epitopes of 2S albumins. He also contributes to the understanding of food flavor chemistry, especially changes in tea aroma compounds during processing and storage. Recognized through multiple provincial and national science awards, Dr. Wu’s research advances the interface of food safety, protein chemistry, and functional nutrition, offering innovative strategies for producing hypoallergenic and health-promoting food products.

Profile: Scopus

Featured Publications:

Wu, Z., Gao, K., Geng, Q., Hu, C., Zhang, W., Li, X., Tong, P., Yang, A., & Chen, H. (2025). Impact of the polyphenol structure on the allergenic potential of the peanut allergen Ara h 2. Journal of Agricultural and Food Chemistry, 73(28), 17967–17979.

Hu, C., Luo, Q., Zhou, L., Zhu, W., Gao, K., Geng, Q., Li, X., Yang, A., Tong, P., Wu, Z., & Chen, H. (2025). Purification of Pru du 6 from almond and its cross-reactivity with Gly m 6 from soybean. International Journal of Molecular Sciences, 26(11), 5425.

Zhang, Y., Zhang, J., Li, X., Yang, A., Tong, P., Wu, Z., & Chen, H. (2025). Untargeted metabolomics reveals changes in serum metabolism in peanut-allergic mice treated by raw and roasted peanuts. Food Science and Human Wellness.

Zhou, W., Geng, Q., Zhang, Y., Zhou, X., Wu, Z., Chen, H., & El-Sohaimy, S. (2024). The flavonoid-allergen interaction and its influence on allergenicity. Food Bioscience, 61, 104939. h

Zhang, Y., Geng, Q., Song, M., Li, X., Yang, A., Tong, P., Wu, Z., & Chen, H. (2024). The structure and potential allergenicity of peanut allergen monomers after roasting. Food & Function, 15, 2577–2586.