Nestor Garcia | Cellular Stress Response | Best Academic Researcher Award

Prof. Dr. Nestor Garcia | Cellular Stress Response | Best Academic Researcher Award

CONICET | Argentina

Dr. Néstor Horacio García, MD, PhD, is a physician-scientist specializing in nephrology and vascular research with a strong focus on renal physiology, hypertension, and phosphate homeostasis. He earned his medical and doctoral degrees from the National University of Córdoba, complemented by advanced research training at the Henry Ford Hospital in the United States, where he investigated mechanisms related to hypertension and vascular regulation. His postdoctoral fellowship at the Mayo Foundation in Rochester, Minnesota, further deepened his expertise in phosphate metabolism and kidney function. Dr. García has served as a Research Clinical Associate in the Nephrology Department at Sanatorium Mayo, Córdoba, where he has acted as Principal Investigator for multiple pharmaceutical protocols and clinical studies. He has also contributed to Inspiranox Therapeutics Corporation as a medical scientist and clinical research consultant, engaging in translational and therapeutic innovation. His research explores the pathophysiology of kidney disease, the molecular regulation of blood pressure, and protective mechanisms against diabetic renal dysfunction. Recognized nationally and internationally, Dr. García has received multiple awards for excellence in basic nephrology research, including honors from the Argentine Society of Hypertension and the Latin American Society of Nephrology and Hypertension (SLANH).

Profile: Orcid

Featured Publications:

García, N. H. (2021). An intensive follow-up in subjects with cardiometabolic high-risk. Nutrition, Metabolism and Cardiovascular Diseases.

García, N. H. (2021). Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease. Stroke, 52(5), e125–e132.

García, N. H. (2020). Monosialoganglioside GM1 reduces toxicity of Ptx and increases anti-metastatic effect in a murine mammary cancer model. Scientific Reports, 10(1), 10645.

García, N. H. (2020). Ibuprofen, a traditional drug that may impact the course of COVID-19: New effective formulation in nebulizable solution. Medical Hypotheses, 144, 110079.

García, N. H. (2020). Eicosapentaenoic acid prevents salt sensitivity in diabetic rats and decreases oxidative stress. Nutrition, 79–80, 110644.

Mohammad Shahangir Biswas | Cellular Toxicity | Best Researcher Award

Dr. Mohammad Shahangir Biswas | Cellular Toxicity | Best Researcher Award

Dr. Mohammad Shahangir Biswas | University of Science & Technology Chittagong | Bangladesh

Dr. Mohammad Shahangir Biswas is a distinguished academician and researcher in the fields of Biochemistry, Biotechnology, and Public Health, currently serving as an Assistant Professor at the University of Science and Technology Chittagong (USTC), Bangladesh. He worked as a Postdoctoral Research Associate at the University of Wisconsin-Madison, USA. His academic and research journey reflects a dedication to global health issues, molecular biology, and neurophysiology. Previously, he served as Assistant Professor at Khwaja Yunus Ali University. He has co-authored more than 48 scientific publications, including multiple first-author articles in The Lancet and other Q1 journals. With international exposure and extensive research collaborations, he brings a strong commitment to scientific excellence. Dr. Biswas is fluent in English, speaks Japanese (basic), and is a native speaker of Bangla. He is passionate about public health advancement, biomedical research, and mentoring the next generation of scientists.

Publication Profiles:

Scopus
Orcid

Education:

Dr. Biswas earned his Ph.D. in Biochemistry/Medical Science from Tokyo Medical and Dental University, supported by the prestigious MEXT Scholarship. He later completed a Postdoctoral Fellowship at the University of Wisconsin-Madison, USA, contributing to advanced research in public health and neurophysiology. Prior to his doctoral studies, he obtained his M.Sc. (Thesis) and B.Sc. (Hons.) degrees in Biochemistry and Molecular Biology from the University of Rajshahi, Bangladesh. His early academic excellence earned him multiple scholarships and positioned him for a strong career in scientific research. This strong educational foundation, combined with global exposure, has equipped him with expertise in molecular biology, public health research, and biotechnological innovation. Dr. Biswas continues to use his academic training to lead impactful research, particularly in disease burden analysis and biomedical therapeutics.

Experience:

Dr. Mohammad Shahangir Biswas brings a diverse academic and research background spanning over a decade. He served as Assistant Professor at Khwaja Yunus Ali University and later joined USTC as Assistant Professor, soon to be active as an Associate Professor. He conducted impactful postdoctoral research at the University of Wisconsin-Madison, contributing to global public health research initiatives. His teaching and research cover Biochemistry, Biotechnology, Neurophysiology, and Public Health. In addition to his teaching roles, Dr. Biswas is a Senior Collaborator in the Global Burden of Disease (GBD) Study, contributing to several high-impact international publications. His strong leadership, grant acquisition, and mentoring skills have made him an influential figure in Bangladesh’s biomedical research landscape. He remains dedicated to fostering collaborative research and academic excellence both locally and internationally.

Awards and Honors:

Dr. Biswas has received numerous awards and recognitions throughout his academic journey. Notably, he was awarded the Japanese MEXT Scholarship for his Ph.D. studies in Japan—a highly competitive and prestigious international award. His undergraduate and postgraduate achievements at the University of Rajshahi were recognized with merit-based scholarships. Additionally, he received an R&D Grant from the Ministry of Science and Technology, Bangladesh, for conducting impactful research. His research contributions to major international collaborations such as the Global Burden of Disease Study have further established his credibility and excellence in global health research. His work has been accepted in top-tier journals including The Lancet and JACC, cementing his role as a leading researcher from Bangladesh on the global stage. These honors reflect his dedication, academic brilliance, and contributions to advancing medical science, especially in the fields of public health, neurodegeneration, and biochemistry.

Research Focus:

Dr. Shahangir Biswas’s research focuses on the molecular basis of disease, global health burden, neurodegeneration, and biomedical intervention strategies. He has contributed significantly to the Global Burden of Disease (GBD) Study, publishing extensively on cancer, cardiovascular diseases, and immunization trends. His work integrates biochemistry, biotechnology, and public health, aiming to identify mechanistic pathways of diseases like Alzheimer’s and tuberculosis, and develop therapeutic interventions. Additionally, he explores snake venom biochemistry, vaccine development, and the impact of social factors such as social media on mental health. Dr. Biswas is passionate about interdisciplinary research combining molecular diagnostics, bioinformatics, and global epidemiological data. His current work includes identifying biomarkers, assessing toxicology impacts, and predicting future disease trends using large-scale datasets. With over 48 peer-reviewed publications, he maintains a strong collaboration network internationally and is a vocal advocate for translational research that informs policy and clinical practice.

Publications Top Notes: 

  1. The global, regional, and national burden of cancer, 1990–2023 – The Lancet

  2. The global burden of cancer: Forecasts to 2050 – The Lancet, Accepted

  3. Global trends in childhood vaccination coverage 1980–2023 – The Lancet, Accepted

  4. Burden of Cardiovascular Diseases in 204 countries (1990–2023) – JACC, Accepted

  5. Biochemical Profile of Bangladeshi Russell’s Viper Venom – Journal of Toxicology, Accepted

  6. Neurodegeneration in Alzheimer’s Disease: Mechanisms and Therapies – Advanced Neurology, Accepted

  7. Musculoskeletal Extrapulmonary TB in Lagos, Nigeria – Health Sci Rep, Accepted

  8. Cytokines and Vascular Inflammation in Viral Infections – Health Sci Rep, Accepted 2

  9. Social Media and Mental Health of Young Adults in Bangladesh – Health Sci Rep, Accepted

  10.  Emerging Evidence on HKU5-CoV-2 – Romanian Journal of Infectious Diseases

Conclusion:

In conclusion, Dr. Mohammad Shahangir Biswas is a highly suitable candidate for the Best Researcher Award, given his consistent and impactful contributions to biomedical and public health research, his impressive publication record in world-renowned journals, and his strong academic foundation. He has demonstrated a deep commitment to advancing scientific knowledge with global relevance and interdisciplinary reach. With continued strategic focus on leadership roles in research, mentorship, and innovation, Dr. Biswas is well-positioned not only to receive this award but also to make even greater contributions to science and society in the years ahead.

Naoki Harada | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Naoki Harada | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Naoki Harada, Osaka Metropolitan University, Japan

Naoki Harada is an Associate Professor at Osaka Metropolitan University, Japan, with extensive expertise in molecular biology, biochemistry, endocrinology, and nutrition. He earned his Ph.D. in Life Sciences from Osaka Prefecture University in 2007. Over the past two decades, Harada has made significant contributions to understanding the physiological and biochemical mechanisms underpinning metabolic diseases, particularly type 2 diabetes. His research, characterized by high citation impact (H-index of 25), centers on pancreatic β-cell function and metabolic regulation. He has published 77 peer-reviewed articles and holds a patent related to therapeutic interventions. Harada has collaborated with leading scientists like Professors Hiroshi Inui and Ryoichi Yamaji, strengthening his academic footprint in both national and international circles. A member of multiple scientific societies, Harada continues to influence the field through impactful research, industry collaboration, and educational leadership.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. Consistent Research Output

    • 77 peer-reviewed publications in reputable journals (SCI, Scopus).

    • Recent high-impact studies published in Journal of Biological Chemistry, Scientific Reports, and FASEB BioAdvances.

    • Active research profile with an H-index of 25 and over 1,785 citations.

  2. Innovative Scientific Contributions

    • Identified REDD2 as a novel therapeutic target for type 2 diabetes—bridging basic research with translational medicine.

    • Works across disciplines such as molecular biology, endocrinology, and nutritional biochemistry.

  3. Project Leadership & Industry Engagement

    • Led or participated in 14 major research projects.

    • 5 consultancy/industry-based projects, reflecting application-oriented research.

  4. Academic and Collaborative Network

    • Strong academic collaborations with Professors Hiroshi Inui and Ryoichi Yamaji.

    • Member of prestigious scientific societies (e.g., Japanese Biochemical Society, Japan Society of Nutrition and Food Science).

  5. Scientific Versatility

    • Contributions span fundamental mechanisms (e.g., oxidative stress, insulin signaling) to dietary interventions (e.g., mogrol, oleamide).

    • Demonstrates ability to bridge molecular insights with systemic physiological outcomes.

⚙️ Areas for Improvement:

  1. International Visibility and Engagement

    • Expanding participation in international conferences and editorial boards could elevate his global scientific standing.

    • Pursuing cross-border collaborations would further enrich the translational value of his work.

  2. Commercialization and Patent Activity

    • While one patent is noted, increased focus on intellectual property development and biomedical commercialization could further validate his applied research strength.

  3. Outreach and Communication

    • More active public science communication (e.g., webinars, policy advocacy, media coverage) would amplify the societal impact of his research.

🎓 Education:

Naoki Harada received his Ph.D. in Life Sciences from Osaka Prefecture University, Osaka, Japan, in September 2007. His doctoral studies laid the foundation for his interdisciplinary research in molecular biology, biochemistry, and endocrinology. Harada’s academic path was driven by a keen interest in the cellular and molecular mechanisms underlying metabolic regulation, particularly in relation to glucose homeostasis and pancreatic function. His education provided him with a solid grounding in experimental techniques, critical thinking, and scientific communication, which have become hallmarks of his later work. The institution, known for excellence in biosciences, enabled Harada to cultivate a strong research acumen. His academic training was complemented by exposure to applied research, linking basic science with clinical and nutritional applications—an approach that he has continued to emphasize throughout his career. His strong educational background plays a pivotal role in his current research endeavors and professional development.

💼 Experience:

Dr. Naoki Harada began his academic career in 2008 as an Assistant Professor at the Graduate School of Life and Environmental Sciences, Osaka Prefecture University. He was promoted to Lecturer in 2015, and subsequently to Associate Professor in 2019. Since 2022, he has served as Associate Professor at the Graduate School of Agriculture, Osaka Metropolitan University. Harada has consistently combined teaching with intensive research, mentoring graduate students while advancing his lab’s focus on metabolic diseases and endocrine physiology. His experience includes leading 14 research projects, consulting on 5 industry-linked nutrition initiatives, and co-authoring over 75 scientific papers. His experience reflects a blend of academic leadership, scientific innovation, and multidisciplinary collaboration. Notably, Harada’s role in identifying REDD2 as a therapeutic target exemplifies his contribution to translational science. He maintains strong academic partnerships and actively contributes to several professional societies, making him a respected figure in Japan’s scientific community.

🔬 Research Focus:

Naoki Harada’s research is at the intersection of molecular biology, endocrinology, and nutrition science, with a particular focus on pancreatic β-cell physiology and glucose metabolism. He investigates how oxidative stress, hormonal signals, and metabolic regulators influence insulin secretion and β-cell viability. One of his pivotal contributions is identifying the REDD2 gene as a negative regulator of β-cell function, offering novel therapeutic targets for type 2 diabetes mellitus. His studies also explore nutrient-sensing pathways, G-protein-coupled receptors, and hormonal modulation of energy metabolism. Harada’s recent work delves into the effects of dietary compounds like mogrol and oleamide on metabolic health, linking molecular mechanisms to real-world dietary interventions. His ability to bridge bench science with clinical and nutritional applications sets his research apart. Through collaborations with leading experts and high-impact publications, Harada continues to advance knowledge in the prevention and treatment of metabolic disorders.

📚 Publications Top Notes:

  • 🧬 REDD2 confers pancreatic β-cell dysfunction in high-fat diet-fed miceJournal of Biological Chemistry, 2025

  • 🦷 Androgens suppress ST3GAL1/4, modulating mucin glycosylation and microbiota in miceBioscience, Biotechnology, and Biochemistry, 2025

  • 🍟 CRTC1 in MC4R cells regulates dietary fat intakeFASEB BioAdvances, 2024

  • 💉 Insulin reduces ER stress-induced apoptosis in INS-1 β-cellsPhysiological Reports, 2024

  • 🍬 Mogrol activates GPBAR1 and insulin secretion, alleviates hyperglycemiaScientific Reports, 2024

  • 🔥 Androgen receptor suppresses β-adrenoceptor-mediated thermogenesisJournal of Biological Chemistry, 2022

  • 🏥 Age-dependent sex differences in NAFLD in TSOD and db/db micePLOS ONE, 2022

  • 🐭 Dietary oleamide attenuates obesity in caged miceBioscience, Biotechnology, and Biochemistry, 2022

  • 🌿 Curcumin targets GPR55 receptornpj Science of Food, 2022

  • 💪 Oleamide rescues muscle atrophy in small-caged miceBritish Journal of Nutrition, 2021

🧾 Conclusion:

Dr. Naoki Harada demonstrates a clear trajectory of research excellence, grounded in scientific rigor and driven by impactful biomedical questions. His ability to identify molecular mechanisms (e.g., REDD2’s role in β-cell dysfunction) and propose therapeutic directions sets him apart as a leading academic in metabolic disease research. His publication record, industry collaborations, and professional memberships underscore a mature and influential academic career.