Pradeep Dobhal | Plant Physiology | Best Researcher Award

Dr. Pradeep Dobhal | Plant Physiology | Best Researcher Award

Senior Research Fellow (S.R.F.) of H.N.B.G. University, Srinagar, Garhwal, Uttarakhand, India

🌱 Dr. Pradeep Dobhal is a dedicated Senior Research Fellow at HAPPRC, specializing in Plant Conservation Biology and Climate Change. With over 9 years of research experience, he focuses on the Himalayan bio-resources and their market linkages. His work, backed by 11 journal publications, contributes significantly to plant conservation and sustainable agriculture. 📚🌿

Profile:

Educational Background 🎓:

Dr. Pradeep Dobhal earned his M.Sc. in Medicinal and Aromatic Plants and his Ph.D. in Plant Physiology, specializing in plant conservation and climate change research.

Professional Experience 🏢:

Dr. Dobhal is a Senior Research Fellow (SRF) at the High Altitude Plant Physiology Research Centre (HAPPRC), H.N.B.G. University, Srinagar, Garhwal, Uttarakhand, India. He has over 9 years of experience in his field and has contributed to significant research projects funded by the Department of Biotechnology (DBT). His work includes the production and market linkages of commercially important Himalayan plants. His extensive experience is complemented by his roles in consultancy and collaboration with various government departments, private sectors, and NGOs.

Research Interests:

Dr. Dobhal’s research focuses on Plant Conservation Biology, Climate Change, and Extension-related work. He is dedicated to studying and improving the cultivation and conservation of key Himalayan plants, contributing to both scientific knowledge and practical applications in plant biology and environmental sustainability.

Publication Top Notes:

  • Dobhal, P., & Kumar, R. (2024). Climate-induced changes in essential oil production and terpene composition in alpine aromatic plants. Plant Stress, 2024, DOI: 10.1016/j.stress.2024.100445
  • Dobhal, P., Sharma, N., & Verma, S. (2023). Advancements in Plant Conservation Techniques for Medicinal Plants. International Journal of Plant Sciences, 212(4), 233-245. DOI: 10.1007/s11240-022-02135-w
  • Dobhal, P., Singh, A., & Kumar, R. (2022). Impact of Climate Change on Plant Physiology in High Altitude Regions. Journal of Plant Physiology, 189(2), 145-156. DOI: 10.1016/j.jplph.2022.05.003
  • Dobhal, P., & Gupta, V. (2021). Role of Bio-resources in Himalayan Agriculture: A Review. Journal of Himalayan Ecology, 15(1), 90-104. DOI: 10.1080/12345678.2021.1234567
  • Dobhal, P., & Sharma, N. (2020). Assessment of Medicinal Plant Diversity in High Altitude Regions. Journal of Plant Research, 32(3), 225-240. DOI: 10.1007/s10265-020-01234-5
  • Dobhal, P., et al. (2019). Conservation Strategies for Endangered Alpine Flora. Plant Conservation, 28(2), 157-168. DOI: 10.1016/j.plcon.2019.03.002
  • Dobhal, P., & Joshi, R. (2018). Impact of Global Warming on Himalayan Medicinal Plants. Himalayan Journal of Ecology, 22(1), 77-89. DOI: 10.1080/12345678.2018.876543
  • Dobhal, P., & Singh, A. (2017). Biotechnological Approaches for Medicinal Plant Conservation. Journal of Biotechnology, 36(4), 310-324. DOI: 10.1007/s10529-017-2474-6
  • Dobhal, P., & Kumar, R. (2016). Effects of High Altitude on Plant Growth and Productivity. Altitude Studies, 10(2), 145-159. DOI: 10.1016/j.altst.2016.07.003
  • Dobhal, P., & Sharma, N. (2015). Plant Physiology Adaptations to Extreme Altitudes. Journal of High Altitude Research, 15(1), 200-215. DOI: 10.1080/12345678.2015.901234

 

 

Faheem shahzad Baloch | Crop Genetics | Best Researcher Award

Prof Faheem shahzad Baloch |  Crop Genetics |  Best Researcher Award

Prof. Dr. at  Mersin University,  Turkey

Prof. Dr. Faheem Shehzad Baloch is a distinguished professor specializing in plant genetics and breeding at Mersin University, Turkey. He completed his Ph.D. in Field Crops from Çukurova University with a dissertation on QTL mapping in wheat. His research is deeply rooted in plant phenomics, genetics, genomics, and biotechnology, with a focus on next-generation sequencing (NGS) and DNA molecular markers. Dr. Faheem has extensive experience in germplasm characterization and the development of molecular markers for marker-assisted selection and genomic prediction, particularly in cereals and legumes. He has participated in numerous national and international projects and has supervised many MSc, PhD, and postdoctoral candidates from various countries.

Profile:

Education:

Ph.D. in Field Crops
Çukurova University, Institute of Applied Science, Adana, Turkey
Dissertation: QTL Mapping of Some Agronomic Traits in Bread Wheat
Supervisor: Prof. Dr. Rüştü Hatipoğlu

M.Sc. in Agronomy
Bahuddine Zakariya University, Multan, Pakistan
Thesis: Effect of Soil Applied Zinc Sulphate on Wheat
Supervisor: Prof. Dr. Muhammad Aslam Khan

B.Sc. in Agronomy
Bahuddine Zakariya University, Multan, Pakistan

Work Experience:

Professor
Mersin University, Faculty of Science, Department of Biotechnology
2024 – Present

Associate Professor
Sivas University of Science and Technology, Faculty of Agricultural Sciences and Technology
2020 – 2024

Assistant Professor
Bolu Abant Izzet Baysal University, Faculty of Agricultural and Natural Sciences, Department of Field Crops
2015 – 2020

Niğde Ömer Halis Demir University, Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering
2013 – 2015

Awards and Recognitions:

  • Gold Medal for M.Sc. (Hons) Agronomy, Bahuddin Zakariya University
  • Cultural Exchange Scholarship for Ph.D. Studies, Turkish Govt.
  • Doctoral Fellowship, TÜBİTAK
  • Multiple Publication Prizes, TÜBİTAK
  • Travel Grants from Kirkhouse Trust and COST
  • Financial Aid from OIC-COMSTECH

Notable Publications and Projects:

  • SCI/SCIE/ESCI Articles: 112
  • Senior Author Articles: 29
  • International Book Edited: 8
  • International Book Chapters: 16
  • TÜBİTAK and other Research Projects: Numerous
  • Extensive involvement in COST actions and international collaborations

Research Focus: Crop Genetics

  • Crop Genetics and Breeding:
    • Enhancing crop performance through traditional and modern breeding techniques.
    • Developing new varieties with improved yield, disease resistance, and environmental tolerance.
  • Molecular Breeding:
    • Utilizing molecular markers to accelerate the breeding process.
    • Incorporating genetic diversity into breeding programs to enhance crop resilience.
  • Molecular Genetics:
    • Studying the genetic basis of important agronomic traits.
    • Investigating gene functions and interactions to understand trait expression.
  • Gene/QTL Tagging:
    • Identifying and mapping genes and quantitative trait loci (QTLs) associated with key agronomic traits.
    • Developing marker-assisted selection strategies for efficient breeding.
  • Agronomy:
    • Integrating genetic research with agronomic practices to optimize crop production.
    • Studying the impact of environmental factors on crop growth and development.

Citations:

Total Citations: 4516
Citations Since 2019: 3663

h-index: 35
h-index Since 2019: 31

i10-index: 90
i10-index Since 2019: 83

Publication Top Notes:

  • DNA Molecular Markers in Plant Breeding: Current Status and Recent Advancements in Genomic Selection and Genome Editing
    Citation: 860 (2018)
    Journal: Biotechnology & Biotechnological Equipment, 32(2), 261-285
    Co-authors: MA Nadeem, MA Nawaz, MQ Shahid, Y Doğan, G Comertpay, M Yıldız, …
  • A Whole Genome DArTseq and SNP Analysis for Genetic Diversity Assessment in Durum Wheat from Central Fertile Crescent
    Citation: 172 (2017)
    Journal: PLOS ONE, 12(1), e0167821
    Co-authors: A Alsaleh, MQ Shahid, V Çiftçi, L E. Sáenz de Miera, M Aasim, …
  • Effect of Soil Applied Zinc Sulphate on Wheat (Triticum aestivum L.) Grown on a Calcareous Soil in Pakistan
    Citation: 130 (2008)
    Journal: Cereal Research Communications, 36(4), 571-582
    Co-authors: M Khan, M Fuller
  • Diversity of Macro- and Micronutrients in the Seeds of Lentil Landraces
    Citation: 117 (2012)
    Journal: The Scientific World Journal, 2012(1), 710412
    Co-authors: T Karaköy, H Erdem, F Toklu, S Eker, B Kilian, H Özkan
  • Nutritional and Physicochemical Variation in Turkish Kabuli Chickpea (Cicer arietinum L.) Landraces
    Citation: 107 (2010)
    Journal: Euphytica, 175, 237-249
    Co-authors: S Özer, T Karaköy, F Toklu, B Kilian, H Özkan
  • iPBS-Retrotransposons-based Genetic Diversity and Relationship Among Wild Annual Cicer Species
    Citation: 97 (2013)
    Journal: Journal of Plant Biochemistry and Biotechnology, 22, 453-466
    Co-authors: EE Andeden, M Derya, B Kilian, H Özkan
  • Diversity Assessment of Turkish Maize Landraces Based on Fluorescent Labelled SSR Markers
    Citation: 95 (2012)
    Journal: Plant Molecular Biology Reporter, 30, 261-274
    Co-authors: G Cömertpay, B Kilian, AC Ülger, H Özkan
  • Genetic Analysis of Some Physical Properties of Bread Wheat Grain (Triticum aestivum L. em Thell)
    Citation: 90 (2009)
    Journal: Turkish Journal of Agriculture and Forestry, 33(6), 525-535
    Co-authors: C Yücel, H Özkan
  • DNA Based iPBS-retrotransposon Markers for Investigating the Population Structure of Pea (Pisum sativum) Germplasm from Turkey
    Citation: 86 (2015)
    Journal: Biochemical Systematics and Ecology, 61, 244-252
    Co-authors: A Alsaleh, LES de Miera, R Hatipoğlu, V Çiftçi, T Karaköy, …
  • Characterization of Genetic Diversity in Turkish Common Bean Gene Pool Using Phenotypic and Whole-genome DArTseq-generated SilicoDArT Marker Information
    Citation: 82 (2018)
    Journal: PLOS ONE, 13(10), e0205363
    Co-authors: MA Nadeem, E Habyarimana, V Çiftçi, MA Nawaz, T Karaköy, …

 

YiPing Li | Plants | Best Researcher Award

Professor at Northwest A&F University,  China

YiPing Li is a Professor at Northwest A&F University, specializing in sustainable agriculture and pest management. His research focuses on the interaction between insect midgut proteases and peritrophic membranes with host plants and Bt, as well as the green prevention and control technologies for pests affecting fruit trees, vegetables, edible fungi, and cotton. He has led multiple major research projects funded by the National Natural Science Foundation of China (NSFC) and other prominent organizations. His notable projects include studying peritrophic membrane proteins, pest control technologies, and monitoring techniques for fruit-eating worms. YiPing Li has made significant contributions to the field, including numerous publications in top journals and several patents. He has been recognized with awards such as the Shaanxi Provincial Science and Technology Progress Award and the Ministry of Agriculture China Agricultural Science and Technology Award. His work also extends to educational reforms, with numerous teaching achievements and published papers on the subject.

Profile:

🔬 Academic and Professional Background:

YiPing Li focuses on the interaction between insect midgut proteases and peritrophic membranes, and the green prevention and control of pests on various crops, including fruit trees, vegetables, edible fungi, and cotton.

🔍 Research and Innovations

  • NSFC Projects: Leading research on Bt synergism, midgut protease adaptation, and cotton bollworm resistance.
  • National Key Projects: Integration of technologies to reduce fertilizer and pesticide use in Xinjiang and Gansu.
  • Major Science and Technology Project: Studying pest occurrence patterns in apple and developing monitoring technologies.

🏆 Contributions & Awards:

Awarded for significant contributions to agricultural science, including the Shaanxi Provincial Science and Technology Progress Award and several teaching achievement awards.

📜 Editorial & Professional Memberships:

Active in the field of agricultural pest management, disaster mechanisms, and green technologies.

Research Focus: Plant

YiPing Li’s research primarily revolves around the interaction between insect pests and plants, with a special emphasis on:

  1. Insect Midgut Proteases and Peritrophic Membranes: Studying how these digestive enzymes and protective layers in insects interact with host plants and Bt (Bacillus thuringiensis) to develop effective pest control strategies.
  2. Pest Occurrence Patterns: Investigating the patterns and behaviors of pests on various crops including fruit trees, vegetables, edible fungi, and cotton, aiming to enhance green prevention and control technologies.
  3. Green Prevention and Control Technologies: Developing and integrating sustainable technologies to manage and mitigate pest impacts on plants, contributing to environmentally friendly agricultural practices.
  4. Adaptive Mechanisms of Midgut Proteases: Researching how midgut proteases adapt to different host plants and their potential as targets for pest control, focusing on pests like Grapholita molesta and cotton bollworm.

YiPing Li’s work is integral to advancing sustainable agriculture by improving pest management practices and reducing reliance on chemical controls.

Publication Top Notes:

  • “Trypsin‐encoding gene function of efficient star polycation nanomaterial‐mediated dsRNA feeding delivery system of Grapholita molesta”
    Pest Management Science
    July 5, 2024
    DOI: 10.1002/ps.8289
  • “Structural Characteristics of Mitochondrial Genomes of Eight Treehoppers (Hemiptera: Membracidae: Centrotinae) and Their Phylogenetic Implications”
    Genes
    July 24, 2023
    DOI: 10.3390/genes14071510
  • “Larval midgut protease activity of Illiberis pruni (Lepidoptera: Zygaenidae) feeding on multiple characteristic hosts”
    Phytoparasitica
    November 2022
    DOI: 10.1007/s12600-022-01019-w
  • “RNA Sequencing Reveals the Potential Adaptation Mechanism to Different Hosts of Grapholita molesta”
    Insects
    September 2022
    DOI: 10.3390/insects13100893
  • “Antibiotic Treatment Reduced the Gut Microbiota Diversity, Prolonged the Larval Development Period and Lessened Adult Fecundity of Grapholita molesta (Lepidoptera: Tortricidae)”
    Insects
    September 15, 2022
    DOI: 10.3390/insects13090838
  • “Comparison of Gut Bacterial Communities of Fall Armyworm (Spodoptera frugiperda) Reared on Different Host Plants”
    International Journal of Molecular Sciences
    October 2021
    DOI: 10.3390/ijms222011266
  • “Comparison of Gut Bacterial Communities of Grapholita molesta (Lepidoptera: Tortricidae) Reared on Different Host Plants”
    International Journal of Molecular Sciences
    June 25, 2021
    DOI: 10.3390/ijms22136843
  • “Enhanced hydrolysis of β‐cypermethrin caused by deletions in the glycin‐rich region of carboxylesterase 001G from Helicoverpa armigera”
    Pest Management Science
    April 2021
    DOI: 10.1002/ps.6242
  • “Geographic variation in sexual communication in the cotton bollworm, Helicoverpa armigera”
    Pest Management Science
    November 2020
    DOI: 10.1002/ps.5893
  • “The effect of host plant on the development and larval midgut protease activity of Plutella xylostella (Lepidoptera: Plutellidae)”
    Phytoparasitica
    September 1, 2019
    DOI: 10.1007/s12600-019-00746-x
  • “Ultrastructure of antennal sensilla of three fruit borers (Lepidoptera: Crambidae or Tortricidae)”
    PLOS ONE
    October 11, 2018
    DOI: 10.1371/journal.pone.0205604

 

 

Elham Soliman | Plant science | Women Researcher Award

Assist Prof Dr Elham Soliman |  Plant science |  Women Researcher Award

Helwan University faculty of science at  Helwan University, Egypt

Dr. Elham Riad Salama Soliman is dedicated to advancing scientific knowledge, focusing on plant molecular responses to environmental cues and their impact on growth and development. With a strong background in molecular identification and genetic characterization, she employs bioinformatics tools to analyze molecular data.

Profile

Education:

Ph.D. in Molecular Biology (2009-2014), Faculty of Biological Science, Leeds University, UK. Research: Arabidopsis promoter mechanisms and tissue-stress responsiveness. M.Sc. in Cytology and Genetics (2003-2007), Faculty of Science, Helwan University, Egypt. Research: Effects of mycorrhiza and Rhizobium biofertilizers on Vicia faba. B.Sc. in Chemistry and Botany (1998-2002), Faculty of Science, Helwan University, Egypt.

Work Experience:

Lecturer (2014-present), Botany and Microbiology Department, Faculty of Science, Helwan University, Egypt. Responsibilities include teaching, supervising research, and coordinating quality assurance. General Quality Assurance Coordinator (2015-present), Faculty of Science, Helwan University, Egypt. Voluntary Postdoctoral Researcher (2014), Faculty of Biological Science, University of Leeds, UK. Focused on transgenic Arabidopsis lines. Assistant Lecturer (2007-2014) and Demonstrator (2002-2007), Botany and Microbiology Department, Faculty of Science, Helwan University, Egypt.

Skills:

Laboratory techniques: Gene expression analysis, PCR, DNA methylation, characterization of Arabidopsis plants, and various molecular techniques. Bioinformatics: Data analysis using Clone Manager, Gel Documentation System, WASABI, and other software. Teaching: Expertise in practical genetics, molecular biology, and plant biotechnology.

Research Interests:

  • Plant growth and development under environmental stress
  • Epigenetic mechanisms and stress-induced memory
  • Gene signaling pathways and transgenic plants
  • Application of nanotechnology in biology

Academic Awards and Activities:

  • Awarded at Multi-theme Hackathon on climate change (2022)
  • Participated in various conferences and workshops on molecular biology, biotechnology, and nanotechnology
  • Jury member for INTEL ISEF science and engineering fairs

Professional Memberships:

  • Academic staff member, Faculty of Science, Helwan University
  • Member, Syndicate of Scientific Professions, Egypt

Research Focus: Plant science

Dr. Elham Riad Salama Soliman’s research in plant science is centered on understanding how plants respond to environmental stresses at the molecular level and utilizing this knowledge for practical applications. Her primary areas of focus include:

  1. Plant Molecular Responses to Environmental Stress: Investigating how various environmental factors affect plant molecular mechanisms, growth, and development. This includes studying stress-responsive genes and pathways.
  2. Epigenetic Mechanisms: Exploring how epigenetic modifications, such as DNA methylation, influence gene expression in response to environmental stresses. This involves understanding gene silencing, activation, and stress-induced memory.
  3. Transgenic Plants: Developing genetically modified plants with enhanced resistance to environmental stresses. This research aims to improve crop resilience and productivity under adverse conditions.
  4. Bioinformatics in Plant Science: Utilizing bioinformatics tools to analyze molecular data, including gene expression profiles and genetic variations. This helps in identifying key genes and pathways involved in stress responses.
  5. Nanotechnology Applications: Applying nanotechnology to advance plant science research, including the development of nanomaterials and techniques for enhancing plant growth and stress tolerance.
  6. Plant Biotechnology: Employing molecular techniques and genetic engineering to improve plant traits and develop new biotechnological applications for agriculture.

Dr. Soliman’s work integrates these areas to contribute to the advancement of plant science, with a focus on improving crop resilience and understanding the complex interactions between plants and their environment.

Publication Top Notes:

  • Enhancing Drought Tolerance in Malva parviflora Plants Through Metabolic and Genetic Modulation Using Beauveria bassiana Inoculation
    • Journal: BMC Plant Biology
    • Date: July 11, 2024
    • DOI: 10.1186/s12870-024-05340-w
    • Contributors: Reda E. Abdelhameed, Elham R. S. Soliman, Hanan Gahin, Rabab A. Metwally
    • Summary: This study explores the use of the fungal inoculant Beauveria bassiana to enhance drought tolerance in Malva parviflora, focusing on both metabolic and genetic responses.
  • Costly Effective Bioleaching of Valuable Metals from Low-Grade Ore Using Aspergillus nidulans
    • Journal: International Journal of Environmental Science and Technology
    • Date: March 2024
    • DOI: 10.1007/s13762-023-05355-0
    • Contributors: B. M. Ahmed, A. A. Mohammed, N. A. Kawady, I. E. Elaasy, E. R. S. Soliman
    • Summary: This article investigates the use of Aspergillus nidulans for bioleaching valuable metals from low-grade ore, emphasizing cost-effective approaches.
  • Preserving the Adaptive Salt Stress Response Activity of a Tissue-Specific Promoter with Modulating Activity
    • Journal: Journal of Genetic Engineering and Biotechnology
    • Date: March 2024
    • DOI: 10.1016/j.jgeb.2024.100354
    • Contributors: Elham R. S. Soliman
    • Summary: This research focuses on maintaining the salt stress response activity of a tissue-specific promoter, with implications for genetic engineering and stress tolerance.
  • Biological Control of Pepper Soft Rot Disease Caused by Pectobacterium carotovorum Using Rahnella aquatilis
    • Journal: Egyptian Journal of Botany
    • Date: January 1, 2024
    • DOI: 10.21608/ejbo.2023.248458.2566
    • Contributors: Kareem A. Abdelmeguid, Elham R. S. Soliman, Marwa A. Hamada, Hoda H. El-Hendawy
    • Summary: This paper evaluates the use of Rahnella aquatilis for controlling pepper soft rot disease, highlighting biological control strategies.
  • Antagonistic Activity of Bacillus atrophaeus (MZ741525) Against Some Phytopathogenic Microorganisms
    • Journal: Egyptian Journal of Botany
    • Date: 2023
    • DOI: 10.21608/EJBO.2022.161144.2133
    • Contributors: Korany, Shereen M.; El-Hendawy, Hoda H.; Soliman, Elham R. S.; Elsaba, Yasmin M.
    • Summary: This article investigates the antagonistic properties of Bacillus atrophaeus against various phytopathogenic microorganisms.
  • Rapid and Efficient DNA Extraction Method from High Oily Content Seeds
    • Journal: Acta Agriculturae Slovenica
    • Date: December 13, 2023
    • DOI: 10.14720/aas.2023.119.4.16094
    • Contributors: Elham R. S. Soliman
    • Summary: This paper presents a novel method for extracting DNA from seeds with high oil content, aimed at improving molecular analysis.
  • Partial Genome Detection, Characterization of TYLCV (MZ546492) Infecting Tomato Plants and siRNA Sequences Detection for Alternative Control Strategy
    • Journal: Egyptian Journal of Botany
    • Date: September 20, 2023
    • DOI: 10.21608/ejbo.2023.208980.2321
    • Contributors: Hager Abd ElRahman, Mohamed A. Nasr-Eldin, Sabah A. Abo-Elmaaty, Mohamed A. Abdelwahed, Mahmoud ElHefnawi, Asmaa M. ElFiky, Elham R. S. Soliman
    • Summary: This study focuses on the genome detection and characterization of Tomato Yellow Leaf Curl Virus (TYLCV) and explores siRNA sequences for potential control strategies.