Jinshan Zhang | Plant Biology | Research Excellence Award

Assoc. Prof. Dr. Jinshan Zhang | Plant Biology | Research Excellence Award

Shandong Bellagen Biotechnology Co. Ltd. | China

Jinshan Zhang is an accomplished plant geneticist and researcher specializing in crop improvement and functional genomics in rice. His work focuses on applying advanced biotechnologies, including CRISPR/Cas9 genome editing and STTM (Short Tandem Target Mimic) systems, to study microRNA functions and enhance stress tolerance. Zhang has investigated the roles of miRNAs, such as miR166, in modulating leaf and xylem architecture to improve drought resistance. He has also characterized key infection-structure genes and kinases in wheat stripe rust. His research has yielded significant insights into gene regulation in rice and wheat, contributing to sustainable crop development and molecular breeding strategies.

Featured Publications

Ahmad Sharifi | Plant Biotechnology | BioAgri Innovator Excellence Award

Assist Prof Dr Ahmad Sharifi |  Plant Biotechnology  |  BioAgri Innovator Excellence Award

Research Institute for Industrial Biotechnology, Iranian Academic Centre for Education, Culture and Research (ACECR)- Khorasan Razavi Branch at  Horticultural Plants Biotechnology Department,  Iran

Dr. Ahmad Sharifi is a dedicated faculty member at the Ornamental Plant Biotechnology Department of the Iranian Academic Center for Education, Culture & Research (ACECR). With a PhD in Agricultural Biotechnology from Ferdowsi University of Mashhad (2015), Dr. Sharifi also holds an MSc (2003) and a BSc (2000) in Agricultural Sciences from Ferdowsi University of Mashhad and the Agricultural Sciences and Natural Resources University of Gorgan, respectively.

Profile:

Academic Qualifications:

🎓 BSc: Agricultural Sciences and Natural Resources, University of Gorgan, 2000
🎓 MSc: Ferdowsi University of Mashhad, 2003
🎓 PhD: Ferdowsi University of Mashhad, 2015

 

Areas of Expertise:

🌿 Plant Biotechnology
🌱 Plant Tissue Culture

 

Research Focus: Plant Biotechnology

  • Plant Tissue Culture:
    • Development and optimization of in vitro culture techniques for ornamental plants.
    • Somatic embryogenesis and organogenesis in various plant species.
    • Micropropagation protocols for large-scale production of disease-free plants.
  • Genetic Engineering:
    • Genetic transformation methods to enhance desirable traits in ornamental plants, such as disease resistance and improved flower quality.
    • CRISPR/Cas9 and other gene-editing technologies for targeted genetic modifications.
  • Molecular Biology:
    • Analysis of gene expression patterns and molecular pathways involved in plant growth and development.
    • Use of molecular markers for plant breeding and genetic diversity studies.
  • Biotechnological Applications:
    • Production of secondary metabolites and phytochemicals through biotechnological approaches.
    • Application of biotechnology for sustainable agricultural practices and environmental conservation.
  • Bioreactor Systems:
    • Utilization of bioreactor systems for the mass propagation of ornamental plants.
    • Scaling up plant tissue culture techniques for commercial applications.

Publication Top Notes:

1. Optimization of the in-vitro culture protocol of Haworthiopsis viscosa and Haworthia truncata var. truncate

  • Authors: Kharrazi, M., Sargazi Moghaddam, Z., Moradian, M., Khadem, A., Sharifi, A.
  • Journal: South African Journal of Botany, 2024, 169, pp. 506–514

2. Micropropagation and ex vitro rooting of three ZZ plant (Zamioculcas zamiifolia Engl.) cultivars

  • Authors: Kharrazi, M., Moradian, M., Moghaddam, Z.S., Khadem, A., Sharifi, A.
  • Journal: In Vitro Cellular and Developmental Biology – Plant, 2023, 59(1), pp. 129–139

3. Role of AGAMOUS Gene in Increasing Tepals of Amaryllis

  • Authors: Dastmalchi, S., Moshtaghi, N., Sharifi, A.
  • Journal: Journal of Agricultural Science and Technology, 2023, 25(4), pp. 975–988

4. Auxin sensitivity improves production of rosmarinic acid in transformed hairy roots of Lavandula angustifolia

  • Authors: Khadem, A., Bagheri, A., Moshtaghi, N., Akhar, F.K., Sharifi, A.
  • Journal: Biological Communications, 2022, 67(3), pp. 160–167

5. In vitro propagation and callus induction of medicinal endangered plant meadow rue (Thalictrum minus L.) for producing berberine

  • Authors: Moghaddam, Z.S., Moshtaghi, N., Sharifi, A., Zahedi, A., Khadem, A.
  • Journal: Journal of Medicinal Plants, 2022, 21(81), pp. 92–101