Isabelle Brigaud | Immunology Cellular Interactions | Best Researcher Award

Mrs. Isabelle Brigaud | Immunology Cellular Interactions | Best Researcher Award

Mrs. Isabelle Brigaud , CNRS IS2M , France

Isabelle Brigaud is an experienced research engineer at CNRS IS2M, Mulhouse, France. With a strong foundation in molecular biology, biochemistry, cell biology, and bioinformatics, she specializes in the study of biomaterials, tissue engineering, and immunology. Brigaud has made significant contributions to understanding the foreign body response to materials such as silicone breast implants and injectable hydrogels. Her expertise spans molecular cloning, protein analysis, and the development of study models using ex vivo, animal models (e.g., zebrafish, Drosophila, and Spodoptera littoralis), and advanced imaging techniques like confocal microscopy. Passionate about collaborative research, she is involved in managing cross-functional projects, fundraising, and mentoring students. Brigaud holds CNU qualifications in cell biology and physiology and is an advocate for continuous technical training. Her research has resulted in numerous high-impact publications in the field of biomaterials and molecular biology.

Publication Profile:

Orcid

Strengths for the Award:

  1. Diverse and High-Impact Research Focus: Isabelle Brigaud’s research spans multiple biological disciplines, including molecular biology, biochemistry, cell biology, and biophysics, showing a broad and in-depth understanding of biological processes. This is particularly demonstrated through her contributions to studies in immunogenic responses in breast implant tissue, the molecular mechanisms of endometriosis, and cellular interactions with biomaterials, indicating her versatility in tackling diverse biological challenges.
  2. Strong Publication Record: Brigaud has a consistent publication history in high-impact journals, such as Biomaterials, Nature Communications, Acta Biomater, and PRS. These publications focus on important topics like cellular migration, biomaterial interaction, and regenerative medicine, all of which are at the forefront of current biomedical research. Her work on the interaction of biomaterials with tissues, especially focusing on inflammatory responses, positions her as a leading researcher in the field.
  3. Expertise in Advanced Techniques: She is proficient in a wide range of cutting-edge techniques, from molecular biology techniques like RNAseq and PCR to cell biology methods, including cell differentiation and functional pharmacology. This technical expertise is key for producing reliable, reproducible results, which is crucial for advancing scientific knowledge.
  4. Cross-Disciplinary Collaboration: Brigaud’s experience in collaborating across various research teams, institutions, and international boundaries highlights her ability to contribute effectively to multidisciplinary research projects. She has also demonstrated leadership in supervising and training students and researchers, underscoring her role as a mentor and leader in the research community.
  5. Management and Funding Expertise: As a research engineer and project manager, she has led several important projects, such as those related to soft tissue reactions to implants and muscle regeneration. Her experience in fundraising and project management indicates strong organizational and leadership skills, both of which are crucial for steering complex research initiatives toward success.
  6. Commitment to Health-Related Research: Her work on health-related issues, such as the effects of silicone breast implants on immune responses and the management of endometriosis symptoms through exercise, shows a direct impact on improving human health. Her research addresses real-world health challenges, making it highly relevant and applicable to clinical settings.

Areas for Improvement:

  1. Broader Dissemination of Findings: While Brigaud has an impressive publication record, there is a potential for more dissemination of her findings to the broader scientific community, especially through high-visibility conferences and workshops. Increased visibility could attract more collaborative opportunities and funding for her projects.
  2. Expanding Research Focus on Novel Therapeutic Applications: Brigaud’s research has already significantly contributed to understanding biomaterials and cell interactions. Further expansion into therapeutic applications, such as designing and testing novel drug delivery systems or regenerative therapies, could strengthen her profile as a researcher with direct clinical and pharmaceutical applications.
  3. Increased Focus on Large-Scale Collaborative Projects: While Brigaud has demonstrated leadership in individual projects, engaging in larger, multi-institutional collaborative projects could provide even more resources and amplify the impact of her research on a global scale.
  4. Enhancing Outreach to Broader Audiences: Given her expertise in addressing important clinical and biomedical issues, there may be an opportunity for Brigaud to engage with broader non-specialist audiences, including through public science communication platforms, to make her work more accessible to the general public.

Education:

Isabelle Brigaud holds a PhD in Molecular Biology and Insect Physiology from Jussieu, Paris VI, awarded with first-class honors in 2008. She also completed a Master 2 in Integrative Biology and Physiology, specializing in adaptation to the environment, and a Master 1 in Population and Ecosystem Biology and Ecophysiology, both from Jussieu, Paris VI, with honors. Brigaud has expanded her academic credentials with postdoctoral research experiences at the University of Freiburg, Germany (2012-2014), focusing on the cytoskeleton organization in zebrafish development. Prior to that, she conducted research at CNRS/INSERM in Lyon, France (2009-2011), where she studied the plasticity of cell morphology during Drosophila oogenesis. Her academic journey reflects a deep commitment to understanding molecular biology, cell biology, and biochemistry, which has shaped her research trajectory and expertise in biomaterials and tissue engineering.

Experience:

Isabelle Brigaud has extensive experience in molecular biology, cell biology, and biochemistry. She has worked at CNRS IS2M, Mulhouse, France, since 2019 as a research engineer, managing biomolecule platforms and leading studies on the foreign body response to silicone implants and injectable hydrogels. Brigaud previously held postdoctoral research positions at the University of Freiburg, Germany, and CNRS/INSERM, Lyon, France, where she investigated cytoskeletal dynamics in zebrafish lateral line development and cell morphology plasticity during Drosophila oogenesis. During her PhD at INRAE, Versailles, she focused on pheromone detection mechanisms in pest moths, an experience that formed her expertise in molecular biology and insect physiology. In addition to her hands-on research, Brigaud is involved in cross-functional project management, collaborative teamwork, and student supervision, demonstrating strong leadership skills and a passion for advancing scientific knowledge.

Awards and Honors:

Isabelle Brigaud’s work has been recognized through several prestigious publications and her contributions to the fields of biomaterials and molecular biology. Her research on the foreign body response to silicone breast implants and injectable hydrogels has made significant strides in understanding tissue regeneration and inflammatory responses. As an active member of the research community, she has been involved in multiple high-impact journal articles published in prominent scientific journals such as Biomaterials, Acta Biomaterialia, and Nature Communications. Although specific awards are not detailed in her profile, her extensive publication record, including multiple first-author and co-author contributions, highlights her ongoing influence in the scientific community. Brigaud’s commitment to advancing knowledge in biomaterials, molecular biology, and tissue engineering is further demonstrated through her leadership roles in cross-disciplinary projects, mentoring students, and managing research collaborations.

Research Focus:

Isabelle Brigaud’s research focuses on the intersection of molecular biology, biomaterials, and tissue engineering, with a specific interest in understanding the foreign body response to implants and regenerative therapies. Her work explores the immune reactions induced by materials like silicone breast implants and injectable hydrogels, aiming to improve tissue regeneration and reduce inflammation. Brigaud’s expertise includes molecular cloning, protein analysis, cell culture, and advanced imaging techniques, all of which she applies to study cell behavior, tissue interactions, and the effects of materials on cellular processes. She uses animal models, including zebrafish and Drosophila, to investigate cell morphology plasticity and mechanotransduction. Her focus also extends to the development of drug delivery systems and the role of extracellular matrix in inflammation and tissue healing. Brigaud’s collaborative approach to research has led to significant advances in the study of immunology, regenerative medicine, and biomaterials.

Publications Top Notes:

  • Brigaud I et al., 2024. Breast implant silicone exposure induces immunogenic response and autoimmune markers in human periprosthetic tissues. Biomaterials 🔬💉
  • Ouedraogo C et al., 2024. Fabrication and characterization of thin self-rolling film for anti-inflammatory drug delivery. Colloids Surf B Biointerfaces 💊🧬
  • Escriva-Boulley G et al., 2023. Effects of physical activity and endometriosis-based education program delivered by videoconference on endometriosis symptoms: the CRESCENDO program. Trials 🏃‍♀️🩺
  • Brigaud I et al., 2020. Surface texturization of breast implants impacts extracellular matrix and inflammatory gene expression in asymptomatic capsules. PRS 🦠🔬
  • Wakhloo NT et al., 2019. Actomyosin, vimentin and LINC complex pull on osteosarcoma nuclei to deform on micropillar topography. Biomaterials 🦴🔬
  • Pieuchot L et al. 2018. Curvotaxis directs cell migration through cell-scale curvature landscapes. Nature Commun. 🌍🧬
  • Brigaud I et al. 2017. Synergistic effects of BMP-2, BMP-6 or BMP-7 with human plasma fibronectin onto hydroxyapatite coatings: A comparative study. Acta Biomater. 🧫
  • Brigaud I et al., 2015. TGFbeta/activin signaling induces epithelial cell flattening during Drosophila oogenesis. Biol Open 🦗💡
  • Montagné N et al., 2012. Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis by heterologous expression in Drosophila. European Journal of Neuroscience 🦋👃
  • Montagne N et al.,2011. Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis. Chemical Senses 🦋💨
  • Brigaud I et al., 2009. Identification of an atypical insect olfactory receptor subtype highly conserved within noctuids. FEBS Journal 🦗👃
  • Brigaud I et al. 2009. Cloning and expression pattern of a putative octopamine/tyramine receptor in antennae of the noctuid moth Mamestra brassicae. Cell and Tissue Research 🦋🧬

Conclusion:

Isabelle Brigaud is undoubtedly a strong contender for the Research for Best Researcher Award. Her multifaceted expertise, robust publication record, and impactful contributions to molecular biology, cell biology, and biochemistry, particularly in the context of health applications, position her as a leader in her field. With her proven ability to manage large-scale research projects and mentor the next generation of scientists, she continues to make significant strides in biomedical research. By focusing on increasing the visibility of her findings and expanding her research into therapeutic domains, Brigaud could further elevate her already outstanding career.

 

 

Seema Singh | Immune cells | Cell Biology Research Award

Prof Dr Seema Singh | Immune cells | Cell Biology Research Award

Prof Dr Seema Singh , UMMC , United States

Seema Singh, Ph.D., M.B.A., is a distinguished Professor and Associate Director of Education and Training at the University of Mississippi Medical Center. She has a robust background in cell and molecular biology, with expertise in cancer research, particularly in understanding racial disparities in cancer biology. Dr. Singh’s career spans multiple prestigious institutions, including the University of South Alabama and the University of Nebraska Medical Center. She is noted for her contributions to cancer research and education, having led numerous funded projects and received multiple awards. In addition to her academic roles, she serves on various scientific review panels and advisory boards, reflecting her prominence in the field. Her current research focuses on the influence of stress on cancer progression and the mechanisms underlying cancer health disparities.

Publication Profile

Orcid

Strengths for the Award

  1. Extensive Experience and Expertise: Dr. Seema Singh has a robust academic and professional background, with over two decades of experience in cell biology and oncology research. Her tenure as a Professor and Associate Director of Education and Training at the University of Mississippi Medical Center underscores her leadership and expertise in the field.
  2. Significant Research Contributions: Dr. Singh’s research has made notable contributions to understanding cancer biology, particularly in relation to health disparities and molecular mechanisms. Her work on the molecular causes and mechanistic underpinnings of breast cancer racial disparity, funded by the NIH (R01CA204801), highlights her capability to tackle complex biological questions with significant impact.
  3. Strong Grant and Contract Record: Her successful acquisition of major grants, including ongoing funding from the Department of Defense and the Breast Cancer Research Foundation of Alabama, demonstrates her ability to secure and manage substantial research funding. Her past work on NIH R01 grants with high scores indicates a strong track record of impactful research.
  4. Editorial and Review Contributions: Dr. Singh’s roles as a Special Issue Editor and journal reviewer for high-impact journals reflect her recognition and respect in the scientific community. This involvement enhances her reputation and showcases her commitment to advancing the field of cell biology through peer review and editorial responsibilities.
  5. Honors and Awards: Her receipt of the Outstanding Cancer Scientist Award and other prestigious honors demonstrates the recognition of her peers for her significant contributions to cancer research. These accolades support her candidacy for the Research for Cell Biology Research Award.
  6. Service and Outreach: Dr. Singh’s involvement in community outreach and advisory roles, such as her leadership in breast cancer awareness initiatives, further illustrates her dedication to translating research into real-world impacts and educating the next generation of scientists.

Areas for Improvement

  1. Broader Research Focus: While Dr. Singh has a strong focus on cancer research and health disparities, expanding her research portfolio to include a wider range of cell biology topics could strengthen her application. This could involve integrating more fundamental cell biology studies or exploring novel cellular mechanisms.
  2. Publication Diversity: Although Dr. Singh has numerous publications, diversifying her publication venues to include emerging or high-impact journals in cell biology could further enhance her visibility and impact in the broader cell biology community.
  3. Collaborative Research: Increasing collaborative efforts with researchers in other subfields of cell biology or related disciplines could provide new insights and foster interdisciplinary approaches, potentially leading to more innovative research outcomes.

Education

Seema Singh earned her M.B.A. with a concentration in Health Care from the University of South Alabama’s Mitchell College of Business (2021-2023). She completed certificate courses in clinical pharmacology and clinical research from the NIH Office of Clinical Research (2022-2023). Her academic journey began with a Ph.D. in Pathology and Microbiology from Cent. Inst. Med. Aromat. Pl. (CIMAP), India (1996-2001), following a Master’s in Botany-Pathology from Aligarh M. University, India (1992-1994). She also holds a Bachelor’s degree with Honors in Botany from Aligarh M. University (1989-1992). Her postgraduate training includes extensive research experience at the University of Nebraska Medical Center, where she held positions as a Research Associate and Post-doctoral Fellow from 2006 to 2009.

Experience 

Dr. Seema Singh’s career is marked by extensive experience in academia and research. She has held tenured professorships at the University of Mississippi Medical Center and the University of South Alabama, focusing on cell biology and oncologic sciences. Her roles included leading the Department of Oncologic Sciences and serving as Vice President for Research at Tatva Biosciences LLC. Dr. Singh has been a Research Associate and Post-doctoral Fellow at the University of Nebraska Medical Center, where she contributed significantly to cancer research. Her work has involved substantial contributions to understanding cancer health disparities and developing innovative research methodologies. In her current role, she is integral to education and training in cancer research, reflecting her leadership and commitment to advancing the field.

Awards and Honors

Dr. Seema Singh has received numerous accolades for her contributions to cancer research. In 2023, she was honored with the Healers Medal by The Mapp Family Foundation and the Outstanding Cancer Scientist Award by the Society of American Asian Scientists in Cancer Research (SAASCR). She has been recognized as a Special Issue Editor for leading journals, including iScience and Discover Oncology. Notably, she received the Mayer Mitchell Annual Award for Excellence in Cancer Research in 2020. Her achievements include several NIH research grants, with her proposal ranked in the top percentiles for impact. Dr. Singh has also been acknowledged with the Russell and Robin Lea National Alumni Excellence in Faculty Innovation Award in 2016. Her consistent recognition underscores her significant impact on cancer research and academic excellence.

Research Focus 

Dr. Seema Singh’s research focuses on the molecular mechanisms underlying cancer health disparities, particularly those affecting racial minorities. Her work explores the role of various biomarkers and signaling pathways in cancer progression and resistance, with a strong emphasis on stress-induced immune landscape changes in breast cancer. She investigates how factors such as serum cortisol levels influence tumor characteristics and disease outcomes. Dr. Singh’s research aims to elucidate the interplay between tumor microenvironments and systemic factors contributing to aggressive cancer phenotypes. Her projects, including studies on IL6-induced Myb expression in prostate cancer and the impact of resistin-LIN28A-(IL6)-STAT3/pSTAT3 regulatory loops in breast cancer, reflect a commitment to addressing critical gaps in cancer research and advancing personalized therapeutic strategies.

Publications Top Notes

  • “Mitochondrial Translocase TOMM22 Is Overexpressed in Pancreatic Cancer and Promotes Aggressive Growth by Modulating Mitochondrial Protein Import and Function” 📄
  • “Supplementary Figure 1 from Mitochondrial Translocase TOMM22 Is Overexpressed in Pancreatic Cancer and Promotes Aggressive Growth by Modulating Mitochondrial Protein Import and Function” 📄
  • “Supplementary Figure 2 from Mitochondrial Translocase TOMM22 Is Overexpressed in Pancreatic Cancer and Promotes Aggressive Growth by Modulating Mitochondrial Protein Import and Function” 📄
  • “Supplementary Figure 3 from Mitochondrial Translocase TOMM22 Is Overexpressed in Pancreatic Cancer and Promotes Aggressive Growth by Modulating Mitochondrial Protein Import and Function” 📄
  • “Supplementary Figure 4 from Mitochondrial Translocase TOMM22 Is Overexpressed in Pancreatic Cancer and Promotes Aggressive Growth by Modulating Mitochondrial Protein Import and Function” 📄

Conclusion

Dr. Seema Singh, Ph.D., M.B.A, is highly suitable for the Research for Cell Biology Research Award. Her extensive experience, significant contributions to cancer research, successful grant record, editorial roles, and community service highlight her exceptional qualifications. Addressing the areas for improvement, such as broadening her research focus and increasing collaborative efforts, could further strengthen her candidacy. Overall, her accomplishments and ongoing work align well with the goals of the Research for Cell Biology Research Award, making her a strong candidate for this recognition.