Zhijie Chang | Extracellular Vesicles | Cell Communication Award

Prof. Zhijie Chang | Extracellular Vesicles | Cell Communication Award

Prof. Zhijie Chang, Tsinghua University, China

Professor Zhijie Chang is a distinguished molecular biologist and tenured professor at the School of Medicine and School of Life Sciences, Tsinghua University, Beijing. His research spans cancer signaling pathways, extracellular vesicle-mediated communication, and stem cell therapy, especially in lung diseases and tumor biology. A seasoned scholar, Dr. Chang earned his Ph.D. in Animal Genetics and Breeding before undertaking postdoctoral training at the University of Alabama at Birmingham. He is currently a respected editor of FEBS Letters and a leader in molecular oncology in China. His recent works highlight the role of CREPT, Smad signaling, and macrophage modulation in cancer and fibrosis. Through decades of academic and translational research, he has significantly advanced our understanding of cell communication in disease contexts. With an extensive publication record in top journals, Dr. Chang remains a leading figure in Asia’s biomedical research landscape.

Publication Profile: 

Scopus

✅ Strengths for the Award:

  1. Pioneering Contributions in Cell Communication
    Prof. Chang’s research on CREPT, Smad proteins, NF-κB/Nrf2, and BMP signaling has directly advanced the understanding of how intracellular and intercellular communication impacts disease progression, especially in cancer and pulmonary disorders.

  2. High-Impact Publications
    He has numerous peer-reviewed articles in prestigious journals such as Nature Communications, Molecular Cancer, Signal Transduction and Targeted Therapy, and Journal of Biological Chemistry, many of which explore molecular and cellular communication in cancer and tissue repair.

  3. Translational Focus
    His integration of mesenchymal stem cell therapy, extracellular vesicles, and gene therapy reflects a strong translational approach, applying basic science to therapeutic innovations—a critical criterion for this award.

  4. Scientific Leadership and Mentorship
    As a tenured professor at Tsinghua University and editor at FEBS Letters, Prof. Chang is a leader in biomedical research and scientific dissemination, actively contributing to academic growth and mentorship.

⚠️ Areas for Improvement:

  1. More Global Recognition
    While well-known in Chinese biomedical circles and respected internationally through publications, increased involvement in global consortia or leadership in international collaborations would further solidify his global scientific footprint.

  2. Public/Community Science Engagement
    Enhancing visibility through public lectures, science communication platforms, or policy advisory roles could broaden the societal impact of his work.

  3. Data-Sharing and Open Science Practices
    Encouraging or highlighting open-access datasets, repositories, or reproducible workflows would align with best practices in modern cell communication research.

🎓 Education:

Professor Zhijie Chang began his academic journey at Northwestern Agricultural University in Yangling, China, where he earned his B.Sc. (1978–1982) in Animal Science. He then continued at the same institution to obtain a combined M.Sc. and Ph.D. in Animal Genetics and Breeding from 1982 to 1989. His graduate research laid the foundation for his future in molecular biology, signaling studies, and genetics. Seeking international exposure and advanced training, he undertook postdoctoral research from March 1997 to October 1998 at the University of Alabama at Birmingham, USA, in the Department of Pathology. There, he specialized in the BMP signaling pathway, gaining expertise in molecular signaling processes critical to cell communication. This blend of domestic and international education has equipped Dr. Chang with both the technical rigor and global perspective needed to pioneer breakthroughs in biomedical science.

💼 Professional Experience:

Professor Zhijie Chang has held a full professorship at Tsinghua University’s School of Medicine since June 2005, where he investigates cancer-related signaling mechanisms. Before this, he completed postdoctoral research at the University of Alabama at Birmingham, focusing on BMP signaling, which strengthened his understanding of developmental and pathological cell signaling. Over the years, he has built a highly productive research lab, contributed extensively to translational medicine, and trained numerous doctoral and postdoctoral researchers. As an editor of FEBS Letters, he also contributes to scientific publishing and peer-review processes. His roles across academia, research, and editorial boards mark him as a multifaceted scientist whose work bridges laboratory insights and therapeutic applications. His collaborative style and consistent research funding reflect his leadership and innovation in molecular oncology and regenerative medicine.

🏅 Awards and Honors:

Professor Zhijie Chang has been recognized multiple times by the Chinese Cell Biology Society for his high-impact publications. In 2003, he received the First Merit Paper Award for his groundbreaking research on hSef-mediated MAPK signaling inhibition in J. Biol. Chem. In 2005, he earned the Third Merit Paper Award for his study on CHIP-mediated degradation of Smad proteins, published in Mol. Cell. Biol.. These awards underscore his early and sustained contributions to deciphering molecular signaling pathways involved in cell communication, differentiation, and oncogenesis. His recent recognitions include publications in top-tier journals like Nature Communications, Molecular Cancer, and Signal Transduction and Targeted Therapy, indicating the continued relevance and innovation of his work. His role as an editor for FEBS Letters further highlights his stature in the field and dedication to advancing cell biology research at national and international levels.

🔬 Research Focus:

Dr. Zhijie Chang’s research primarily investigates cellular communication in cancer and inflammatory diseases, with a focus on CREPT, Smad proteins, and extracellular vesicles. His work dissects how tumor-derived signals modulate the tumor microenvironment, metastasis, and immune cell behavior. He has made critical discoveries regarding the role of CREPT in chromatin looping and transcriptional regulation, especially in triple-negative breast cancer. In pulmonary fibrosis models, he has shown how umbilical cord-derived mesenchymal stem cells (MSCs) modulate macrophage activity via secreted vesicles. Another major area is his exploration of Smurf1, PDK1–Akt, and JAK/STAT3 signaling axes, targeting them for therapeutic intervention in various cancers. His translational approach integrates gene therapy, stem cell-based treatments, and protein signaling studies, bridging basic and clinical sciences. Through collaborative and interdisciplinary methods, Dr. Chang contributes valuable insights into how cells communicate and respond in disease settings.

📚 Publication Top Notes:

  1. 📘 CREPT is required for the metastasis of triple-negative breast cancer through a co-operational-chromatin loop-based gene regulation

  2. 🧪 Clinical investigation on nebulized human umbilical cord MSC-derived extracellular vesicles for pulmonary fibrosis treatment

  3. 🧬 Gene Therapy with Enterovirus 3C Protease: A Promising Strategy for Various Solid Tumors

  4. 🌬 Umbilical cord-derived mesenchymal stem cells preferentially modulate macrophages to alleviate pulmonary fibrosis

  5. CREPT upregulates the antioxidant genes via activation of NF-κB/Nrf2 in acute liver injury

  6. 🔁 An oncoprotein CREPT functions as a co-factor in MYC-driven transformation and tumor growth

  7. 🎯 Targeting Smurf1 to block PDK1–Akt signaling in KRAS-mutated colorectal cancer

  8. 📤 Microenvironment-induced CREPT expression by cancer-derived small extracellular vesicles primes field cancerization

  9. 🔋 Oxidative phosphorylation safeguards pluripotency via UDP-N-acetylglucosamine

  10. 🍄 Lachnochromonin, a fungal metabolite from Lachnum virgineum, inhibits cell growth and promotes apoptosis in tumor cells through JAK/STAT3 signaling

🧾 Conclusion:

Professor Zhijie Chang exhibits a robust and well-established career built on investigating mechanisms of cell signaling, tumor microenvironment dynamics, and intercellular communication. His scientific rigor, translational impact, and leadership in the field of cell communication make him an outstanding candidate for the Research for Cell Communication Award. Addressing some broader outreach and open science practices could further elevate his profile, but his contributions to foundational and applied research in this domain are already exemplary.

Alessandra Luchini | Cell-Cell Communication | Best Researcher Award

Prof. Alessandra Luchini | Cell-Cell Communication | Best Researcher Award

Prof. Alessandra Luchini , George Mason University , United States

Dr. Alessandra Luchini is a tenured professor at George Mason University in the School of Systems Biology and serves as Director of the Biosciences Ph.D. Program. A native of Italy, she holds a Ph.D. in Bioengineering and a degree in Chemical Engineering cum laude from the University of Padova. She completed her postdoctoral training in proteomics and nanotechnology at George Mason University. Dr. Luchini’s pioneering research integrates nanotechnology with biomedical diagnostics to enhance disease detection and treatment, particularly in cancer, infectious, and inflammatory diseases. She has co-authored numerous peer-reviewed publications and is a co-inventor on several patents. Dr. Luchini also co-founded two biotech companies: Ceres Nanosciences and Monet Pharmaceuticals. Recognized nationally and internationally, she was named one of Popular Science’s “Brilliant 10” and received Virginia’s Outstanding Faculty Award in 2023. Her work bridges academia, innovation, and industry in pursuit of transformative healthcare solutions.

Publication Profile:

Orcid

✅ Strengths for the Award:

  1. Distinguished Academic and Leadership Role: Tenured professor and director of the Ph.D. Biosciences program at George Mason University, reflecting leadership in both research and education.

  2. Innovative Translational Research: Her work bridges nanotechnology and proteomics to create real-world diagnostic solutions, particularly for cancer, infectious diseases, and neurological conditions.

  3. Entrepreneurial Impact: Co-founder of two biotech companies (Ceres Nanosciences and Monet Pharmaceuticals) that commercialize her academic innovations, demonstrating translational relevance.

  4. Recognition and Awards: Named among the “Brilliant 10” by Popular Science (2011) and recipient of the Virginia Outstanding Faculty Award (2023), showcasing external validation of excellence.

  5. Scientific Productivity: Author of peer-reviewed publications across high-impact journals with an H-index of 31, indicating influence and citation of her work.

  6. Active Research Funding: Current DoD-funded project as Principal Investigator on Lyme disease diagnostics reflects continued support and relevance of her work.

🔍 Areas for Improvement:

  1. Wider Global Collaboration: While she has excellent U.S. academic and biotech engagement, increasing international collaborations (e.g., with European or Asian institutions) could enhance global research impact.

  2. Public Science Communication: Dr. Luchini’s impactful research could benefit from more visibility in mainstream science communication outlets or public forums, particularly on topics like microbiome and cancer diagnostics.

  3. Mentorship Metrics: While she leads a Ph.D. program, formal documentation of mentorship outcomes (e.g., student success stories, awards) could further strengthen her educational impact profile

🎓 Education:

Dr. Alessandra Luchini’s educational journey began in Italy at the prestigious University of Padova, where she earned her degree in Chemical Engineering cum laude. Driven by her passion for biomedical innovation, she pursued a Ph.D. in Bioengineering at the same institution, graduating in 2005. Her doctoral studies provided a foundation in the integration of engineering principles with life sciences, focusing on biomolecular processes. In 2007, she completed postdoctoral training in Proteomics and Nanotechnology at George Mason University in the United States. This specialized training equipped her with expertise in advanced diagnostic tools and molecular profiling technologies. Her educational background uniquely combines strong engineering fundamentals with deep biological insight, allowing her to develop groundbreaking diagnostic platforms and translational research that bridges basic science with clinical applications. Dr. Luchini’s academic credentials laid the groundwork for a prolific research career in bioengineering, nanomedicine, and systems biology.

🧪 Experience:

Dr. Luchini began her U.S.-based academic career at George Mason University in 2007 and has steadily advanced to the role of Professor with tenure since 2020 in the School of Systems Biology. She has served as Graduate Program Director for the Ph.D. in Biosciences since 2019. Her leadership extends beyond the classroom, guiding graduate students and junior researchers in fields such as proteomics, nanotechnology, and infectious disease diagnostics. From 2015 to 2020, she was an Associate Professor and contributed extensively to curriculum development and translational research. Dr. Luchini has also co-founded Ceres Nanosciences (2008) and Monet Pharmaceuticals (2019), which commercialize technologies stemming from her research. Her interdisciplinary work spans collaboration with immunologists, chemists, and clinicians, contributing to large-scale projects funded by entities such as the U.S. Army. Her experience reflects a rare blend of academic rigor, entrepreneurial drive, and real-world impact.

🏅 Awards and Honors:

Dr. Alessandra Luchini’s excellence in research and education has earned her prestigious recognitions. In 2023, she was honored with the Outstanding Faculty Award by the State Council of Higher Education for Virginia, the highest faculty award in the state. She was previously named one of Popular Science’s “Brilliant 10” scientists in 2011, highlighting her innovative contributions to nanotechnology and disease diagnostics. These honors underscore her leadership in biomedical engineering, translational research, and mentorship. Dr. Luchini has also been a Principal Investigator on numerous federally funded research projects and holds several issued patents in proteomic diagnostics, which have led to real-world biotech applications. Her scientific impact is reflected in an H-index of 31, showcasing her influential publication record. She is also recognized for public engagement, contributing to both academic and industrial innovation. These achievements solidify her as a leading candidate for a Best Researcher Award.

🔬 Research Focus:

Dr. Alessandra Luchini’s research lies at the intersection of proteomics, nanotechnology, and molecular diagnostics. Her core aim is to improve early detection and therapeutic strategies for diseases such as cancer, Lyme disease, tuberculosis, and neurological disorders. She is a recognized leader in the development of affinity nanoparticle platforms, enabling the capture of disease biomarkers from biofluids like urine and saliva. Recent studies explore how bacterial extracellular vesicles affect calcium signaling in breast cancer, revealing new pathways for early intervention. Her work in protein painting mass spectrometry identifies key binding sites relevant to autoimmune and infectious diseases, while her collaborations with biotech firms bring these discoveries into diagnostic tools. Dr. Luchini is known for applying systems biology to real-world clinical problems, translating lab findings into impactful solutions. Her research integrates computational biology, clinical proteomics, and nanomaterials to open new frontiers in personalized medicine and public health diagnostics.

📚 Publications Top Notes:

  1. 🧫 Urinary bacteriophage cooperation with bacterial pathogens…Commun Biol, 2025

  2. 🧪 Urinary Borrelia Peptides Correlate with GSQ-30 Scores…J Cell Immunol, 2025

  3. 🧏 Hearing Science Accelerator: Sudden Sensorineural Hearing Loss…Otol Neurotol, 2024

  4. 🧬 A set of diagnostic tests for detection of active Babesia duncani…Int J Infect Dis, 2024

  5. 🧠 Protein Painting Mass Spectrometry in Discovery of Interaction Sites…ACS Chem Neurosci, 2024

  6. 🖼️ Wheat-Based Glues in Conservation and Cultural Heritage…J Proteome Res, 2024

  7. 🧬 Identification of Unambiguous Borrelia Peptides…Methods Mol Biol, 2024

  8. 🧠 Molecular profiling reveals nucleoside metabolism in medulloblastoma…Acta Neuropathol Commun, 2023

  9. 🧬 PD-L1 Interface Region Responsible for PD-1 Binding…J Biol Chem, 2023

  10. 💊 Drug discovery efforts at George Mason University…SLAS Discov, 2023

🧾 Conclusion:

Dr. Alessandra Luchini is exceptionally well-qualified for a Best Researcher Award. Her unique combination of high-impact research, translational innovation, academic leadership, and entrepreneurial success places her in the top tier of candidates. Her multidisciplinary approach—spanning bioengineering, nanomedicine, and molecular diagnostics—addresses some of the most pressing challenges in modern medicine. While minor areas such as broader global outreach and science communication could be enhanced, these do not diminish her outstanding achievements. Her track record reflects both depth and breadth of contribution, making her a strong, deserving candidate for this recognition.