Jin-Feng Hu | Molecular Mechanisms Signaling | Distinguished Scientist Award

Prof. Jin-Feng Hu | Molecular Mechanisms Signaling | Distinguished Scientist Award

Prof. Jin-Feng Hu , School of Pharmaceutical Sciences, Taizhou University, Zhejiang 318000, PR China ,China

Dr. Jin-Feng Hu is a globally recognized natural products chemist and currently serves as the Dean and Principal Investigator at the School of Pharmaceutical Sciences, Taizhou University, Zhejiang, China. With over three decades of academic and research experience, Dr. Hu has dedicated his career to discovering and developing bioactive natural products, particularly from rare and endangered plant species endemic to China. His contributions span innovative phytochemistry, drug discovery, and chemical biology. He has previously held prestigious academic positions at Fudan University and East China Normal University. Dr. Hu’s collaborations span continents, including Germany and the USA, contributing to an impressive international research profile. His work is widely published in high-impact journals and highly cited, underscoring the scientific relevance and translational potential of his discoveries.

Publication Profile:

Scopus

✅ Strengths for the Award:

  1. Prolific Contributions to Natural Products Chemistry
    Dr. Hu has made significant breakthroughs in phytochemical research, particularly focusing on rare and endangered Chinese plants, contributing both to drug discovery and biodiversity conservation.

  2. Global Research Experience
    His training and postdoctoral fellowships in leading institutions across China, Germany, and the USA (including the Hans-Knoell-Institute and the Scripps Research Institute) add to his international reputation and collaborative strength.

  3. Academic Leadership & Institutional Impact
    As a former department chair at Fudan University and current Dean at Taizhou University, Dr. Hu has not only led cutting-edge research but also shaped the academic direction of major pharmaceutical programs.

  4. High-Impact Publications
    Multiple first or last-author papers published in leading journals such as Phytochemistry, Organic Chemistry Frontiers, Bioorganic Chemistry, and Molecules—with a focus on pharmacologically relevant compounds.

  5. Innovative Research Themes
    Focused on drug resistance, inflammation, and metabolic diseases, using unique molecules like bis-diterpene heterodimers and sesquiterpenes, often with novel skeletons—this shows originality and translational potential.

⚙️ Areas for Improvement:

  1. Wider Public Recognition
    While he is highly respected in academic and pharmaceutical chemistry circles, broader science communication or participation in international awards/societies could boost global visibility.

  2. Commercialization & Patents
    Encouraging the translation of discoveries into patents or clinical trials would further highlight the real-world impact of his research.

  3. International Grant Funding
    Expansion into multinational funding sources (e.g., NIH, EU Horizon) would solidify global research integration and amplify the scale of his discoveries.

🎓 Education:

Dr. Hu earned his B.S., M.S., and Ph.D. degrees in Organic Chemistry from Lanzhou University (1986–1996). He pursued advanced training and postdoctoral research in Natural Products Chemistry at the Institute of Materia Medica, Chinese Academy of Medical Sciences, followed by a prestigious BMBF Fellowship at the Hans-Knoell-Institute (HKI) in Germany. Dr. Hu then continued his postdoctoral work in the United States—first at the University of Mississippi focusing on natural products chemistry and later at the Genomics Institute of the Novartis Research Foundation/The Scripps Research Institute, in the laboratory of renowned chemist Prof. Peter G. Schultz. His academic journey across leading institutions in China, Germany, and the US provided a robust foundation in interdisciplinary sciences and global perspectives in medicinal chemistry.

🧪 Experience:

Dr. Hu currently serves as Full Professor, Principal Investigator, and Dean of the School of Pharmaceutical Sciences at Taizhou University (2021–present). Before this, he was Chair of the Department of Natural Products Chemistry at Fudan University (2011–2021), and prior to that, Deputy Director of the MOE Key Laboratory of Brain Functional Genomics at East China Normal University (2006–2011). In each position, he has led cutting-edge research in natural products, coordinated multi-institutional collaborations, mentored numerous young scientists, and managed institutional development. His lab integrates phytochemistry, structural biology, and drug discovery platforms, focusing particularly on therapeutic leads for antimicrobial resistance, cancer, and metabolic diseases. With a career that reflects both academic excellence and applied innovation, Dr. Hu has significantly contributed to China’s leadership in pharmaceutical science.

🏆 Awards and Honors:

Dr. Hu has received multiple national and international honors, including fellowships, research grants, and awards recognizing his excellence in natural products chemistry. He was a BMBF Research Fellow in Germany, a Postdoctoral Fellow at the Novartis Genomics Institute and The Scripps Research Institute in the US, and has been a recipient of several Chinese National Natural Science Foundation awards. His leadership roles at prestigious institutions like Fudan University and East China Normal University reflect the esteem he holds within the academic community. Moreover, his publications are widely cited, and his research frequently garners attention for its innovation and societal relevance, especially in the context of preserving biodiversity and discovering drugs from endangered species. These achievements make him an outstanding candidate for a Distinguished Scientist Award.

🔬 Research Focus:

Dr. Hu’s research is centered on the discovery and development of novel bioactive compounds from rare and endangered plants endemic to China. His work emphasizes the interface of phytochemistry, chemical biology, and drug discovery, employing integrative analytical techniques like NMR, LC-MS, and bioassays. A major focus is the identification of natural inhibitors of key metabolic enzymes such as ATP-citrate lyase and ACC1, with applications in metabolic disorders and cancer. His studies also target drug-resistant bacterial infections, inflammation, and neurodegenerative diseases. By studying plants that are ecologically valuable yet scientifically underexplored, Dr. Hu not only contributes to new therapeutic leads but also aids in conservation biology and chemotaxonomy. His approach of combining traditional Chinese medicinal knowledge with modern molecular science marks him as a trailblazer in natural products-based drug discovery.

📚 Publication Top Notes:

  1. 🌲 Spiroamentotaxols A−D from Amentotaxus yunnanensis and their bioactivitiesOrganic Chemistry Frontiers (2025)

  2. 🍃 Fortunefuroic acids from Keteleeria fortunei via integrated dereplication approachPhytochemistry (2025)

  3. 🌿 Benzofurans from Parrotia subaequalis with antimicrobial activityPhytochemistry (2025)

  4. 🌸 Bis-iridoid glycosides and triterpenoids from Kolkwitzia amabilis targeting ACC1 and ACLMolecules (2024)

  5. 🍂 Platanosides from Platanus acerifolia against drug-resistant infectionsBioorganic Chemistry (2024)

  6. 🌼 Natural products from Heptacodium miconioides and their classification significancePhytochemistry (2024)

  7. 🌲 Tsugaforrestiacids A–O from Tsuga forrestii with ATP-citrate lyase inhibitionPhytochemistry (2024)

  8. 🌲 Terpenoids from Pseudotsuga forrestii as DRAK2 inhibitorsJournal of Molecular Structure (2024)

  9. 🍁 Anti-inflammatory flavonoids from Platanus acerifolia leavesPhytochemistry Letters (2024)

  10. 🌴 Fortunefuroic acid J from Keteleeria hainanensis with dual inhibitory effectsChemistry & Biodiversity (2024)

🔚 Conclusion:

Dr. Jin-Feng Hu is an exceptionally qualified candidate for the Distinguished Scientist Award. His trailblazing research in natural products chemistry, strategic leadership in academic institutions, and commitment to preserving biodiversity through medicinal innovation position him as a thought leader in his field. His work not only expands the scientific frontier of phytochemical drug discovery but also addresses urgent global health concerns such as antibiotic resistance and metabolic disease. Recognizing Dr. Hu with this award would honor a career devoted to science, mentorship, and societal benefit, while also empowering his continued excellence in the years to come.

Liquan Huang | Signal Transduction Mechanisms | Best Researcher Award

Prof. Dr. Liquan Huang | Signal Transduction Mechanisms | Best Researcher Award

Prof. Dr. Liquan Huang , Zhejiang University – Zijingang Campus , China

Liquan Huang is a distinguished molecular biologist specializing in taste transduction and chemosensory research. He completed his Ph.D. in Molecular Biology from Yale University in 1996 under Dr. Michael Lerner and pursued postdoctoral training at Mount Sinai School of Medicine, New York University. With extensive experience in molecular physiology, Dr. Huang has made significant contributions to sensory perception and signaling pathways. Currently, he serves at Zhejiang University, China, where he leads groundbreaking research on G-protein signaling and taste receptor mechanisms. His work has been widely published in top-tier journals, influencing the fields of neuroscience and molecular biology. Dr. Huang has mentored several postdoctoral researchers and contributed to organizing international scientific conferences. His research on sensory transduction has broad applications, including food sciences and human health. His dedication to advancing scientific knowledge makes him a strong candidate for the Best Researcher Award.

Publication Profile:

Orcid

Strengths for the Award:

  1. Extensive Research Contributions – Dr. Liquan Huang has an impressive publication record in high-impact journals such as Nature Neuroscience, Journal of Neuroscience, eLife, and PLoS Genetics. His work spans molecular biology, neurophysiology, taste receptor studies, and virology, showing a broad impact in multiple scientific disciplines.

  2. Significant Scientific Impact – His research on taste receptors, G-protein signaling, and environmental viromes has contributed significantly to the understanding of molecular signaling pathways, sensory biology, and viral ecology. His discoveries, such as the pseudogenization of sweet receptors in cats and the role of Gγ13 in inflammation resolution, have broad implications.

  3. Funding and Recognitions – Dr. Huang has received multiple fellowships and research grants, including the Morley R. Kare Fellowship and Small Research Grant Program Award, demonstrating sustained recognition and funding for his work.

  4. Mentorship and Training – Having trained multiple postdoctoral fellows and graduate students, he has contributed to the scientific community by fostering new talent in molecular biology and neuroscience.

  5. International Collaborations and Professional Affiliations – As a member of esteemed organizations like the New York Academy of Sciences, Association for Chemoreception Sciences, and Society for Neuroscience, and as an organizer of major scientific meetings, he has actively contributed to the global research community.

  6. Recent Cutting-Edge Research – His recent work on environmental viromes, the evolution of human pathogenic RNA viruses, and G-protein-mediated inflammation resolution shows his ability to evolve with emerging research trends.

Areas for Improvement:

  1. Diversity of Funding Sources – While Dr. Huang has received multiple research grants, expanding his funding from diverse international sources and large-scale collaborative grants could further support high-impact research.

  2. Broader Public Engagement – Increased engagement in public science communication, industry collaborations, and policy-making could enhance his influence beyond academia.

  3. Interdisciplinary Expansion – While his research is already multidisciplinary, extending collaborations into areas such as AI-driven bioinformatics, synthetic biology, or applied therapeutics could amplify the translational impact of his work.

Education:

Dr. Liquan Huang has a strong academic background in biology and molecular sciences. He obtained his Ph.D. in Molecular Biology from Yale University in 1996, where he was mentored by Dr. Michael Lerner. Prior to this, he earned an M.Ph. in Biology from Yale University in 1993. His foundational training in cell biology and anatomy began at New York Medical College in 1991. These rigorous academic pursuits equipped him with expertise in molecular and cellular mechanisms, particularly in sensory and chemosensory research. His education laid the groundwork for his later advancements in taste receptor studies and G-protein signaling pathways. His tenure at these prestigious institutions provided him with a strong theoretical and experimental foundation, allowing him to excel in interdisciplinary research. His academic excellence was further recognized through fellowships at Yale University and New York Medical College, highlighting his commitment to scientific innovation.

Experience:

Dr. Liquan Huang has an extensive research and academic career spanning over three decades. He began his career as an Assistant Researcher at the Institute of Genetics, Academia Sinica, China (1987–1990). Following his doctoral studies, he pursued postdoctoral research at Mount Sinai School of Medicine, New York University (1996–2000) under Dr. Robert F. Margolskee. He later became an Instructor in the Department of Physiology and Biophysics at Mount Sinai School of Medicine (2000–2002). Currently, he is a researcher and faculty member at Zhejiang University, leading studies in molecular physiology and taste transduction. Dr. Huang has also trained multiple postdoctoral fellows and collaborated on high-impact research. His expertise in sensory biology has led to numerous publications and organizing roles in international conferences. His contributions to neuroscience, molecular biology, and sensory perception establish him as a leading figure in the field.

Awards and Honors:

🏅 Morley R. Kare Fellowship (2004–2006) – Recognized for excellence in chemosensory research.
🎖 Small Research Grant Program Award (R03 DC05154) (2002–2005) – Supported research on molecular taste mechanisms.
🏆 Individual National Research Service Award (F32DC00310) (1998–2000) – Awarded for outstanding postdoctoral research contributions.
🥇 Institutional National Research Service Award (T32DA07135) (1997–1998) – Recognized for research excellence in molecular biology.
🎓 Yale University Fellowship (1991–1996) – Prestigious scholarship for Ph.D. studies in Molecular Biology.
🎖 New York Medical College Fellowship (1991) – Awarded for academic excellence in cell biology training.

Research Focus:

🔬 Taste Transduction & Chemosensory Signaling – Investigating molecular mechanisms of taste receptor activation.
🧬 G-Protein Signaling Pathways – Studying Gγ13 subunit’s role in sensory processing and inflammation resolution.
🦠 Virology & Environmental Microbiology – Exploring deep-sea RNA viromes and their evolutionary significance.
🩺 Biomedical Applications – Examining taste receptor implications in human health and disease.
🍽 Food Science & Peptidomics – Identifying bioactive peptides with taste-modulating properties.

Publications Top Notes📚:

1️⃣ Gγ13 colocalizes with gustducin in taste receptor cells – Nature Neuroscience 🧠
2️⃣ Tas1r3 encodes a new taste receptor – Nature Genetics 🧬
3️⃣ Transient receptor potential channel in taste receptor cells – Nature Neuroscience ⚡
4️⃣ G protein subunit G13 in retinal ON bipolar cells – Journal of Comparative Neurology 👁
5️⃣ Polymorphisms in Tas1r3 gene affect saccharin preference – Journal of Neuroscience 🧪
6️⃣ Cats’ indifference toward sugar due to receptor pseudogenization – PLoS Genetics 🐱
7️⃣ Voltage-gated chloride channel in taste bud cells – Journal of Biological Chemistry 🌊
8️⃣ Human taste: peripheral anatomy & transduction – Advances in Otorhinolaryngology 👅
9️⃣ Interferon pathways activated in taste bud cells – Journal of Neuroscience 🦠
🔟 Bitter peptides activate human bitter receptors – Biochemical and Biophysical Research Communications 🍵

Conclusion:

Dr. Liquan Huang’s extensive contributions to molecular biology, neuroscience, and virology, combined with his mentorship, international collaborations, and leadership in scientific meetings, make him a strong candidate for the Best Researcher Award. While there is always room for growth in funding diversification and interdisciplinary expansion, his body of work demonstrates excellence and innovation in his field.