Sunil Gangurde | Plant Molecular Biology | Young Scientist Award

Assoc. Prof. Dr. Sunil Gangurde | Plant Molecular Biology | Young Scientist Award

Shandong Agricultural University | China

Sunil S. Gangurde is a maize and peanut molecular geneticist whose work integrates genomics, molecular breeding, and pathogen–host interaction studies to accelerate crop improvement. His research spans quantitative genetics, high-throughput genotyping, genomic selection, and pan-genomics, with applications in maize, peanut, and vegetable pathosystems. He has contributed significantly to dissecting complex traits related to biotic and abiotic stress tolerance, particularly resistance to Aspergillus flavus infection and heat stress in peanut. His projects include decoding genomic regions controlling pod shell and seed-coat–mediated resistance, developing a pan-genome of A. flavus to understand fungal diversity, and establishing genomic selection pipelines to enhance breeding efficiency. He has also worked on identifying susceptible growth stages in broccoli for improved disease management using fungicide-based strategies. Earlier work involved rapid generation advancement through single-seed high-throughput genotyping, enabling faster genetic gains in groundnut breeding programs. His contributions have been recognized through competitive grants and scientific awards, reflecting his role in developing innovative molecular tools and improving crop resilience. Across global research environments—including CGIAR centers, international universities, and multi-institutional collaborations—he continues to advance genomics-driven solutions for sustainable crop improvement.

Profiles: Google Scholar | Scopus

Featured Publications: 

Gangurde, S. S.*, Chenglai, W., Zhang, J., & Zhang, X. (2025). Divergent selection in moisture-responsive root-branching pathways between tropical and temperate maize germplasm. Journal of Integrative Plant Biology. (In press)

Gangurde, S. S., Asija, S., Bajaj, P., Fountain, J. C., Abbas, H. K., Holbrook, C. C., Kemerait, R. C., & Guo, B. (2025). Draft genome assemblies of 38 Aspergillus parasiticus isolates collected from South Georgia crop fields. Microbiology Resource Announcements, 12, e00083-25.

Shah, P., Gangurde, S. S., Senthil, R., Singam, P., Peerzada, O. H., Janila, P., Singh, K., Mayes, S., & Pandey, M. K. (2025). Identification of high blanchability donors, candidate genes, and markers in groundnut. BMC Plant Biology. (In press)

Mohinuddin, D. K., Gangurde, S. S., Khan, H., Bomireddy, D., Sharma, V., Shah, P., Sagar, U. N., Dube, N., Senthil, R., Tembhurne, B. V., & Nayak, V. H. (2025). Genomic analysis reveals the interplay between ABA-GA in determining dormancy duration in groundnut. Plant Physiology and Biochemistry.

Gangurde, S. S.*, Kaur, N., Guo, B., & Dutta, B. (2025). Leaf epicuticular wax and hormone-mediated resistance to Alternaria brassicicola in broccoli. Physiologia Plantarum, 177(2), e70172.

Sahu, N., Naik, B., Padmavathi, G., Gangurde, S. S., Pandey, M., Bentur, J. S., & Divya, D. (2025). Identification of novel QTL associated with whitebacked planthopper (WBPH) and brown planthopper (BPH) resistance in the rice line RP2068. Gene, 149742.

Moghiya, A., Munghate, R. S., Sharma, V., Mishra, S. P., Jaba, J., Gaurav, S. S., Gangurde, S. S., & Pandey, M. K. (2025). Dissecting genomic regions and candidate genes for pod borer resistance and component traits in pigeonpea minicore collection. Frontiers in Plant Science, 16, 1630435.

Veerendrakumar, H. V., Sudini, H. K., Kiranmayee, B., Devika, T., Gangurde, S. S., Vasanthi, R. P., Kumar, A. N., Bera, S. K., Guo, B., Liao, B., & Varshney, R. K. (2025). Dissecting genomic regions, candidate genes, and pathways using multi-locus genome-wide association study for stem rot disease resistance in groundnut. The Plant Genome, 18(3), e70089.

Rangari, S. K., Dube, N., Sharma, V., Gangurde, S. S., Sharma, M., et al. (2025). InDels in an intronic region of gene Ccsmd04 coding for dormancy/auxin-associated protein control sterility mosaic disease resistance in pigeonpea. International Journal of Biological Macromolecules, 145777.

Roychowdhury, R., Das, S. P., Das, S., Biswas, S., Patel, M. K., Kumar, A., Sarker, U., Choudhary, S. P., Das, R., Yogendra, K., & Gangurde, S. S.* (2025). Advancing vegetable genetics with gene editing: A pathway to food security and nutritional resilience in climate-shifted environments. Functional & Integrative Genomics, 25(1), 1–32.

Naser Farrokhi | Plant Cell Biology | Best Researcher Award

Assoc. Prof. Dr. Naser Farrokhi | Plant Cell Biology | Best Researcher Award

Assoc. Prof. Dr. Naser Farrokhi | Shahid Beheshti University | Iran

Dr. Naser Farrokhi is an accomplished Associate Professor in the Department of Cell & Molecular Biology at Shahid Beheshti University, Tehran, Iran. With a Ph.D. in Plant Molecular Biology from the University of Adelaide, his expertise lies in plant genomics, particularly in functional gene analysis for crop improvement. Over two decades, he has led impactful research projects focusing on rice genomics, plant peptides, cell wall biosynthesis, and nanotechnology in agriculture. His work bridges cutting-edge molecular biology with practical breeding strategies, aiming to develop ideotype rice varieties adapted to future environmental demands. Dr. Farrokhi has received prestigious national and international scholarships and has published extensively in high-impact journals. He collaborates globally across disciplines, contributing to sustainability, biotechnology, and agricultural resilience. His multidisciplinary approach has also explored biomedical applications of plant-derived materials. With a strong teaching and mentorship record, Dr. Farrokhi exemplifies innovation, leadership, and scientific rigor in plant science and biotechnology.

Publication Profile:

Google Scholar
Scopus
Orcid

Education:

Dr. Naser Farrokhi holds a Ph.D. in Plant Molecular Biology from the University of Adelaide, where he studied the functional analysis of barley glycosyltransferases under the supervision of Prof. Dr. Geoffrey Bruce Fincher. He earned his M.Sc. in Plant Breeding from Azad University, Karaj, Iran, with a thesis on genotypic and phenotypic variation of quantitative traits in mungbean, guided by Prof. Dr. Alireza Taleie. His academic journey has been supported by competitive scholarships from Iran’s Ministry of Science and the Agricultural Research, Education and Extension Organization (AREEO). These solid academic foundations in plant breeding and molecular biology have enabled Dr. Farrokhi to integrate classical breeding approaches with modern genomics. His academic training across continents has equipped him with advanced technical skills, a global research perspective, and the capacity to lead in interdisciplinary collaborations focused on crop improvement and plant biotechnology.

Experience:

Dr. Farrokhi has over 20 years of experience in plant molecular biology and functional genomics. Currently an Associate Professor at Shahid Beheshti University, he teaches and supervises graduate students in plant biotechnology, cell biology, and molecular breeding. His postdoctoral research at California State University, Long Beach, focused on gene function in plant systems using transcriptomic approaches. He has worked extensively with GWAS, CRISPR genome editing, and bioinformatics for trait dissection in rice and other crops. His leadership in multi-institutional projects has contributed to advancements in crop biofortification, stress tolerance, and sustainability. He is also involved in translational research, such as nanomaterials in regenerative medicine and environmental applications. His career is marked by collaborative, cross-disciplinary work and a strong publication record. Dr. Farrokhi has served as a peer reviewer, scientific advisor, and mentor, demonstrating commitment to both research and academic excellence across national and international platforms.

Awards & Honors:

Dr. Naser Farrokhi has been the recipient of several prestigious awards throughout his academic and research career. he earned a scholarship from the Agricultural Research, Education and Extension Organization (AREEO) of Iran to pursue his M.Sc., he was awarded a Ph.D. scholarship by the Ministry of Science, Research, and Technology of Iran to study in Australia. His postdoctoral research in the United States was supported by the National Science Foundation Fellowship at California State University Long Beach in 2005. These accolades highlight his consistent academic excellence and potential for innovative research. He is frequently invited to collaborate in national and international projects due to his proven expertise in plant genomics, biotechnology, and sustainable agriculture. His track record of publications and contributions to interdisciplinary research have earned him recognition in plant sciences, biotechnology, and even biomedical fields.

Research Focus:

Dr. Farrokhi’s research is centered on plant molecular biology, functional genomics, and crop improvement, with a major focus on rice as a model and target crop. He employs genome-wide association studies (GWAS), transcriptomics, and post-GWAS analysis to identify key genes involved in vitamin E biosynthesis, yield-related traits, and stress responses. His goal is to develop future-ready rice ideotypes using conventional breeding or genome editing. His research extends to safflower developmental biology, cannabis-derived materials for biomedical applications, and nanotechnology-based agricultural inputs. He integrates bioinformatics, co-expression network analyses, and proteomics to dissect gene regulatory pathways. His collaborative work across plant and animal systems has also explored osteoinduction, tissue regeneration, and nanoscience applications. Dr. Farrokhi’s research is impactful, interdisciplinary, and focused on sustainability, nutrition, and climate resilience, positioning him at the forefront of innovative agricultural biotechnology.

Publications Top Notes:

  1. Comparative transcriptome analysis of multi-branched safflower mutant vs. WT

  2. Unraveling molecular mechanisms of phytohormonal regulation in safflower buds

  3. Enhanced osteoinduction using porous herbal cellulose nanostructures

  4. Interplay of rice vitamin E under abiotic stresses via in-silico transcriptomics

  5. rGO-coated cannabis-derived nanogrooved scaffolds for bone regeneration

  6. Recent advances on GLA-producing organisms – future biotechnological directions

  7. Post-GWAS analysis of tocopherol content in rice seeds

  8. GWAS-based dissection of yield components in rice (Oryza sativa L.)

  9. Gene expression in coral bleaching under high temperature stress

  10.  Co-expression network of microproteins in plant embryo development

Conclusion:

Dr. Farrokhi’s robust publication record, innovative research in rice genomics, and commitment to academic excellence make him a highly suitable candidate for the Best Researcher Award. His work contributes meaningfully to addressing current and future challenges in sustainable agriculture and plant biotechnology.