Alma Burlingame | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Alma Burlingame | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Alma Burlingame , UCSF , United States

Alma L. Burlingame is a distinguished Professor of Chemistry and Pharmaceutical Chemistry at the University of California, San Francisco. She has over five decades of experience in the fields of mass spectrometry, proteomics, and systems biology. With expertise in the identification and study of unknown proteins and post-translational modifications like phosphorylation, acetylation, and glycosylation, her work has contributed significantly to understanding protein dynamics. Dr. Burlingame has been a pioneer in proximity-biotin labeling for protein complex discovery and has earned widespread recognition for her interdisciplinary contributions to molecular biology and chemistry. Her long-standing collaboration with various international research institutions has fostered advancements in protein interaction and cellular signaling pathways, marking her as a leader in her field.

Publication Profile:

Scopus

Strengths for the Award:

  1. Innovative Contributions: Dr. Burlingame has made significant contributions to mass spectrometry, proteomics, and systems biology, especially in the development of new methodologies for protein analysis and post-translational modifications. Her work in identifying and studying unknown proteins and their modifications has broadened the scope of proteomics.

  2. Multidisciplinary Expertise: Her expertise spans across various fields including chemistry, physics, biological sciences, and medicine, demonstrating her versatility and depth of knowledge in complex scientific issues.

  3. Impact on the Scientific Community: Through her extensive publication record and influential research, Dr. Burlingame has advanced our understanding of protein dynamics, cell signaling, and the role of glycosylation and phosphorylation in health and disease.

  4. Leadership and Mentorship: Dr. Burlingame’s leadership roles, particularly as a co-chair of major international symposia, reflect her stature in the scientific community. Additionally, her mentorship of students and postdocs has helped shape the next generation of scientists in proteomics and systems biology.

Areas for Improvement:

  1. Broader Collaboration with Clinical Applications: While Dr. Burlingame’s research is foundational in proteomics, further expansion of collaborative work with clinical researchers could enhance the practical application of her discoveries, particularly in disease diagnosis and therapeutics.

  2. Public Outreach: Given the complexity of her research, efforts to communicate her findings to broader audiences could help bridge the gap between academic research and public understanding of the significance of proteomics in health.

Education:

Dr. Burlingame earned her Bachelor of Science degree from the University of Rhode Island in 1959. She went on to complete her PhD in Chemistry and Physics at the Massachusetts Institute of Technology (MIT) in 1962. She further honed her scientific expertise as a Guggenheim Fellow at the Karolinska Institute in Stockholm, Sweden, in 1972, specializing in Physiological Chemistry. Over the years, Dr. Burlingame has continued to advance her education, conducting cutting-edge research in the realms of mass spectrometry, proteomics, and the study of post-translational modifications. Her rigorous academic background, combined with her groundbreaking work, has made her a respected figure in biochemistry and molecular biology.

Experience:

Dr. Burlingame has held several prominent positions throughout her distinguished career. She currently serves as a Professor of Chemistry and Pharmaceutical Chemistry at the University of California, San Francisco. She has also held significant roles such as a University Fellow at Hong Kong Baptist University and Professor of Biochemistry at University College London. Dr. Burlingame has been recognized by the American Association for the Advancement of Science and has been an elected Fellow since 1990. Her professional journey includes visiting professorships at leading institutions such as the Ludwig Institute for Cancer Research. Additionally, she has co-chaired major international symposia on mass spectrometry, enhancing her reputation in the global scientific community. Her leadership and influence in research have made her a pivotal figure in mass spectrometry and proteomics.

Awards and Honors:

Dr. Burlingame has earned numerous prestigious honors throughout her career. In 2018, she was awarded the Albert Nelson Marquis Lifetime Achievement Award for her long-standing contributions to scientific research. She was named a Fellow of the American Society of Biochemistry and Molecular Biology in 2022. Her significant achievements were further recognized when she received the MCP Lectureship Plenary Award at the Society for Glycobiology in 2013. Additionally, she was honored with the Achievement Award from the International Forum of Proteomics in 2012 for her impactful work in proteomics. Her longstanding contributions to the field of mass spectrometry have made her an internationally respected leader, and she continues to inspire future generations of scientists.

Research Focus:

Dr. Burlingame’s research focuses on mass spectrometry, proteomics, and systems biology, with a specific emphasis on protein sequencing, identification, and the dynamics of post-translational modifications (PTMs). She has made significant contributions to understanding the site-specific dynamics of PTMs like phosphorylation, acetylation, and glycosylation, and their roles in cell signaling and differentiation. Her group is particularly known for its work in proximity-biotin labeling, a technique used for protein complex discovery and interactomics. She has also studied the dynamic nature of proteins involved in cellular processes such as protein synthesis, cell signaling, and differentiation. By studying how PTMs influence cellular functions, Dr. Burlingame’s work helps to uncover mechanisms underlying diseases like cancer and neurological disorders. Her innovative approaches in mass spectrometry and proteomics continue to influence the understanding of complex biological systems.

Publications Top Notes:

  1. Revealing nascent proteomics in signaling pathways and cell differentiation 🧬🔬

  2. Locally translated mTOR controls axonal local translation in nerve injury 🧠💥

  3. Mapping axon initial segment structure and function by multiplexed proximity biotinylation 🧬⚡

  4. Capture, release, and identification of newly synthesized proteins for improved profiling of functional translatomes 🔍🔬

  5. Endothelial-secreted Endocan activates PDGFRA and regulates vascularity and spatial phenotype in glioblastoma 💉🧠

  6. Functional screen identifies RBM42 as a mediator of oncogenic mRNA translation specificity 🧬🔍

  7. Phosphorylation-driven epichaperome assembly is a regulator of cellular adaptability and proliferation 🔑🧬

  8. TRIM46 Is Required for Microtubule Fasciculation In Vivo But Not Axon Specification or Axon Initial Segment Formation 🧠⚙️

  9. RAPIDASH: Tag-free enrichment of ribosome-associated proteins reveals composition dynamics in embryonic tissue, cancer cells, and macrophages 🧬📊

  10. Remodelling of the translatome controls diet and its impact on tumorigenesis 🥗🎯

Conclusion:

Dr. Alma Burlingame is undoubtedly a leading figure in the fields of mass spectrometry and proteomics. Her innovative research, mentorship, and contributions to the understanding of protein modifications and their implications for health make her a highly deserving candidate for the Best Researcher Award. Her work has had a profound and lasting impact on molecular biology, and she continues to be a driving force in scientific discovery.

 

 

 

Sabyasachy Mistry | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Sabyasachy Mistry | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Sabyasachy Mistry , US FDA , United States

Sabyasachy (Babu) Mistry is a highly skilled bioanalyst with over sixteen years of experience in analytical chemistry, organic synthesis, and bioanalytical method development. He is currently working at the US Food and Drug Administration (FDA) in Silver Spring, MD. Mistry has a broad expertise that spans liquid chromatography-mass spectrometry (LC-MS/MS), enzyme-linked immunosorbent assay (ELISA), nuclear magnetic resonance (NMR), and various organic chemistry techniques. With strong communication and problem-solving skills, Mistry excels both as a team member and independent researcher. He has contributed to multiple scientific publications, focusing on pharmacokinetics, drug discovery, and regulatory practices, in addition to mentoring students and offering leadership roles in academic settings.

Publication Profile: 

Scopus

Strengths for the Award:

Sabyasachy (Babu) Mistry’s distinguished experience in analytical and bioanalytical chemistry makes him a strong contender for the Research for Best Researcher Award. With over sixteen years of experience, his expertise spans liquid chromatography-mass spectrometry (LC-MS/MS), enzyme-linked immunosorbent assays (ELISA), and computational chemistry, among others. His work in drug solubility and pharmacokinetics, particularly his contributions to hERG assays, is highly relevant to regulatory sciences. Mistry’s capacity to bridge scientific inquiry with FDA regulations ensures his research not only advances scientific understanding but also directly supports regulatory science. His well-documented research, combined with leadership roles and multiple awards, reinforces his research excellence.

Areas for Improvements:


While Mistry’s expertise is extensive, further expansion into collaborative, cross-disciplinary projects could further enrich his body of work. Engaging more in international research initiatives could lead to innovative research outcomes and foster broader scientific networks.

Education:

Sabyasachy Mistry holds a Ph.D. in Analytical Chemistry from Purdue University, where he conducted research under the guidance of Professor Paul G. Wenthold. His dissertation focused on mass spectrometric detection of indophenols for phenol analysis. Prior to this, Mistry completed his M.S. in Organic Chemistry from the University of Dhaka in Bangladesh, where he worked with Professor Nilufar Nahar. His solid educational foundation, combined with his hands-on research experience, has provided him with expertise in a wide range of scientific disciplines, including analytical chemistry, organic synthesis, and bioanalytical methods. Furthermore, Mistry completed the CERSI Immersion Course in Drug Discovery, Drug Development, and Regulation at the UCSF-Stanford Center of Excellence in Regulatory Science and Innovation, strengthening his knowledge in FDA regulations and drug development processes.

Experience:

Mistry’s extensive professional experience spans over a decade in both academic and regulatory environments. Since 2020, he has been serving as a Bio-analyst at the US Food and Drug Administration (FDA), where he applies his expertise in analytical chemistry to support drug discovery and regulatory science. At Purdue University, Mistry worked as a Teaching Assistant (TA) and Head TA in the Department of Chemistry from 2014 to 2020, fostering the growth of new scientists while also contributing to research. His responsibilities included conducting experiments, guiding graduate students, and presenting research findings. Mistry’s work involves advanced techniques such as LC-MS/MS, HPLC, NMR, and computational chemistry tools like Gaussian and Q-Chem. His cross-disciplinary research has contributed to the scientific understanding of pharmacokinetics, drug solubility, and enzyme activity, aligning with regulatory practices in drug approval processes.

Awards and Honors:

Sabyasachy Mistry has been recognized for his outstanding contributions to analytical and bioanalytical chemistry. He was awarded the Graduate Student Travel Award at the 67th ASMS Conference on Mass Spectrometry and Allied Topics in June 2019 in Atlanta, GA. Additionally, Mistry received multiple Travel Scholarships for his student work at the ASMS conferences from 2016 to 2018, showcasing his dedication to advancing scientific knowledge. His role as a volunteer and mentor further exemplifies his leadership within the academic community. These awards highlight his exceptional skills in mass spectrometry and analytical techniques, further solidifying his expertise in the field of chemical research. Mistry’s ability to present complex scientific data and his contributions to regulatory science have garnered recognition from peers and industry professionals alike.

Research Focus:

Sabyasachy Mistry’s research focuses on bioanalytical chemistry, pharmacokinetics, and regulatory science, particularly in drug discovery and development. His work involves the application of advanced techniques such as LC-MS/MS, ELISA, HPLC, and mass spectrometry to investigate drug interactions, solubility, and bioavailability. Mistry’s research also extends to the computational aspects of chemistry, using density functional theory (DFT) calculations to predict reaction profiles and optimize molecular interactions. A key area of interest for Mistry is studying the effects of drug formulations on biological systems, particularly through hERG assays to assess drug safety and efficacy. His work aligns with FDA regulations and contributes to improving drug regulatory processes. Additionally, Mistry has a strong background in organic chemistry, working on the synthesis and modification of small organic molecules. This combination of experimental and computational chemistry makes his research multifaceted, bridging the gap between scientific discovery and regulatory implementation.

Publications Top Notes:

  1. Determination of Lopinavir and Ritonavir in hERG solution to Support In Vitro hERG Block Potency Assessment Using LC-MS/MS: The Challenge of Poor Drug Solubility 📑
  2. Evaluation of a Sequential Antibiotic Treatment Regimen of Ampicillin, Ciprofloxacin, and Fosfomycin against Escherichia coli CFT073 in the Hollow Fiber Infection Model Compared with Simultaneous Combination Treatment 💊
  3. Determination of Five Positive Control Drugs in hERG External Solution (Buffer) by LC-MS/MS to Support In Vitro hERG Assay as Recommended by ICH S7B ⚖️
  4. Probing the Pyrolysis of Guaiacol and Dimethoxybenzenes Using Collision-Induced Dissociation Charge-Remote Fragmentation Mass Spectrometry 🔬
  5. Investigation of the Substituent Effects of the Azide Functional Group Using the Gas-Phase Acidities of 3- and 4-Azidophenols 📚
  6. Mass Spectrometric Detection of the Gibbs Reaction for Phenol Analysis 🔍
  7. Participation of C-H Protons in the Dissociation of a Proton Deficient Dipeptide 💡
  8. The HIVToolbox 2 Web System Integrates Sequence, Structure, Function and Mutation Analysis 🧬
  9. The Geogenomic Mutational Atlas of Pathogens (GoMAP) Web System 🌍
  10. Effect of Sodium Bicarbonate on the Mechanical and Degradation Properties of Short Jute Fiber Reinforced Polypropylene Composite by Extrusion Technique 🔧

Conclusion:

Sabyasachy Mistry has demonstrated exceptional scientific acumen and practical contributions in the field of bioanalytical chemistry. His expertise and leadership in various research domains position him as an excellent candidate for the Research for Best Researcher Award. His continued work on drug discovery and regulatory science will likely result in even greater contributions to both the scientific and regulatory communities.