Mengting liu | Cell Structure Analysis | Best Researcher Award

Assoc. Prof. Dr. Mengting liu | Cell Structure Analysis | Best Researcher Award

Assoc. Prof. Dr. Mengting liu, Xi’an Jiaotong University, China

Dr. Mengting Liu is an Associate Professor and Master’s Supervisor at the School of Electrical Engineering, Xi’an Jiaotong University. A promising scholar in advanced battery materials, she has made significant contributions to lithium-sulfur, sodium-ion, and zinc-based battery technologies. Dr. Liu holds a Ph.D. in Condensed Matter Physics from Lanzhou University and completed joint doctoral training at the Georgia Institute of Technology, under the mentorship of Prof. Gleb Yushin. As the principal investigator of several high-profile national projects, her work centers around electrolyte design, interfacial chemistry, and cathode material innovation. Dr. Liu has authored over 50 SCI papers in top-tier journals and holds more than 30 patents, reflecting her innovative contributions to electrochemical energy storage. With an H-index of 24 and successful technological transformations, she stands out as a leading young researcher shaping the future of sustainable energy materials in China and globally.

Publication Profile: 

scopus

Strengths for the Award:

  1. High-Impact Publications

    • Over 50 SCI-indexed papers in world-renowned journals such as J. Am. Chem. Soc., Advanced Materials, Energy & Environmental Science, and Nano Energy.

    • Numerous first-author and corresponding-author contributions, showcasing leadership in research.

  2. Innovation in Battery Technology

    • Pioneer in sodium-ion, lithium-sulfur, and zinc-ion battery materials, particularly focusing on interfacial engineering and electrolyte design.

    • Leads cutting-edge research in cold-environment batteries and high-voltage cathodes.

  3. Recognition and Funding

    • Principal Investigator of multiple National Natural Science Foundation of China (NSFC) projects.

    • Successfully translated 3 technologies into industrial application – indicating practical impact.

  4. Patent and Intellectual Property

    • 30+ patents applied/granted, reflecting a commitment to innovation and intellectual property creation.

  5. Academic Metrics

    • H-index: 24, indicating solid citation impact and relevance in the field.

  6. International Exposure

    • Conducted joint Ph.D. research at Georgia Institute of Technology, under the mentorship of global battery expert Prof. Gleb Yushin.

  7. Mentorship and Leadership

    • Serves as Master’s Supervisor, contributing to the training of the next generation of researchers.

🔧 Areas for Improvement:

  1. Public and Global Recognition

    • While the academic output is outstanding, broader international visibility (e.g., keynote speeches, global consortia participation) could strengthen recognition.

  2. Cross-disciplinary Expansion

    • Exploring AI-driven materials discovery or solid-state battery systems could further diversify her portfolio and enhance future relevance.

  3. Team Expansion and Postdoctoral Supervision

    • Expanding mentorship to include postdoctoral researchers and international collaborators could amplify research output and impact.

📚 Education:

Dr. Mengting Liu earned her Ph.D. in Condensed Matter Physics from Lanzhou University (2015–2021), focusing on electrochemical materials and battery interface design. During her doctoral studies, she was awarded a prestigious national scholarship for joint training at the Georgia Institute of Technology (2018–2020), where she conducted cutting-edge research in the School of Materials Science and Engineering under Prof. Gleb Yushin. Her work there focused on advanced cathode materials for sodium-ion and lithium-sulfur batteries, combining material design, characterization, and performance optimization. Her academic foundation is grounded in interdisciplinary training, bridging physics, chemistry, and materials science. Her research was pivotal in understanding phase transitions, solid–electrolyte interfaces, and novel electrolyte systems, which has set the stage for her postdoctoral and faculty research directions in energy storage. Her academic path reflects a strong alignment with innovation in clean energy technologies and fundamental materials science.

🧪 Experience:

Since November 2021, Dr. Mengting Liu has served as an Assistant Professor (Qingxiao Program A) at Xi’an Jiaotong University’s School of Electrical Engineering. She is actively involved in supervising graduate students and leading independent research in electrochemical energy storage. Prior to this role, she spent over two years at the Georgia Institute of Technology during her doctoral studies, collaborating with international experts and engaging in high-impact research. She has led several major research projects funded by the National Natural Science Foundation of China, focusing on electrolyte structure regulation and cathode performance optimization. Her industrial collaborations have led to three technological transformations and over 30 patents. Dr. Liu’s interdisciplinary background and international exposure have enabled her to contribute extensively to frontier research in lithium-ion, lithium-sulfur, and sodium-ion battery technologies. Her teaching and mentoring roles complement her research, contributing to talent development in the energy storage field.

🔬 Research Focus:

Dr. Mengting Liu’s research is centered on electrochemical energy storage, with a particular focus on sodium-ion, lithium-sulfur, and lithium-ion batteries. Her work involves the design of high-performance cathode materials, such as layered oxides and composite structures, and the development of nonflammable, stable electrolytes that enable long-life and high-temperature battery operation. She is especially recognized for her studies on interfacial engineering, including cathode-electrolyte interphases (CEI) and solid electrolyte interphases (SEI), which are critical to battery safety and longevity. Her recent research expands into entropy-regulated materials and polymer electrolytes to tackle extreme environmental conditions like ultra-low temperatures. With a holistic approach combining material synthesis, mechanism analysis, and performance validation, Dr. Liu aims to develop next-generation batteries with high energy density, long cycle life, and environmental adaptability. Her research is not only academically impactful but also industrially relevant, bridging fundamental science with practical innovation.

📄 Publication Top Notes: 

  1. 🧯 Cation−Anion Regulation in Flame-Retardant Electrolytes for Safe Na-Ion Batteries – J. Am. Chem. Soc. (2025)

  2. 🔥 Nonflammable Sulfone-Based Electrolytes for High-Temp LiNi0.5Mn1.5O4 – ACS Energy Lett. (2024)

  3. ❄️ Inorganic-Rich Interphases via Nonflammable Electrolytes for Low-Temp LiNi0.5Mn1.5O4 – Adv. Funct. Mater. (2024)

  4. Tailoring Cathode–Electrolyte Interface for High-Power Lithium–Sulfur Batteries – Nano-Micro Lett. (2025)

  5. 🔋 Wadsley–Roth Structure Engineering for High-Power Li-Ion Batteries – Energy Environ. Sci. (2024)

  6. 🔄 Biphaseto-Monophase Transition in Na0.766+xLixNi0.33-xMn0.5Fe0.1Ti0.07O2 – Carbon Energy (2024)

  7. 🛡️ Zn-Ion Channels with Double-Network Layer for Stable Zinc Anodes – Energy Storage Mater. (2024)

  8. 🔗 In-Situ Polymerized Ether Gel Electrolyte for High-Voltage Li-Metal Batteries – Adv. Funct. Mater. (2024)

  9. 🔧 Reinforced Bimetal Oxide-Based PEO Electrolytes for Stable Interfaces – Adv. Funct. Mater. (2025)

  10. ♻️ Phase-Stable and Air-Stable O3-Type Entropy-Reinforced Na Cathodes – Nano Energy (2025)

🧾 Conclusion:

Dr. Mengting Liu is exceptionally well-qualified for the Best Researcher Award. Her track record reflects a rare blend of deep theoretical knowledge, experimental expertise, and real-world application in the fast-evolving field of energy storage.

With a robust publication portfolio, a leadership role in nationally-funded projects, multiple technological transformations, and strong international training, she has already demonstrated leadership and innovation that align perfectly with the purpose of the award.

M. A. El-Shorbagy | Cell Structure Analysis | Best Researcher Award

Prof. M. A. El-Shorbagy | Cell Structure Analysis | Best Researcher Award

Prof. M. A. El-Shorbagy, Prince Sattam Bin Abdulaziz University, Saudi Arabia

Prof. Mohammed Abd El-Rahman El-Shorbagy Hassan is a distinguished academic specializing in engineering mathematics and optimization. Born in Egypt on March 4, 1982, he currently serves as a Professor in the Department of Mathematics at the College of Science and Humanities Studies, Prince Sattam Bin Abdulaziz University, Saudi Arabia. With a career spanning over a decade in higher education and applied research, Prof. El-Shorbagy has contributed significantly to the fields of numerical optimization, artificial intelligence, and multiobjective programming. He is widely published and recognized for his scholarly books and high-impact journal articles. His work integrates mathematical rigor with real-world engineering applications. In addition to teaching and mentoring, he actively participates in international conferences and collaborative research projects. Known for his hybrid approaches combining swarm intelligence with classical methods, Prof. El-Shorbagy stands as a prominent figure in optimization and computational engineering.

Publication Profile: 

Google Scholar

✅ Strengths for the Award:

  1. Extensive Research Output:
    Prof. El-Shorbagy has a substantial publication record that includes books, high-impact journal articles, and international conference proceedings. His research appears in prestigious outlets such as Scientific Reports, Renewable Energy, and Materials, with multiple papers exceeding 100 citations.

  2. Strong Interdisciplinary Focus:
    His work bridges mathematics, artificial intelligence, and engineering, showcasing versatility. He effectively combines theoretical frameworks (e.g., optimization theory) with practical applications in power systems, materials science, and fluid dynamics.

  3. Innovative Methodologies:
    Known for hybridizing Particle Swarm Optimization, Genetic Algorithms, and Trust Region methods, he has demonstrated an innovative approach to solving complex, real-world optimization problems.

  4. Global Academic Impact:
    His presence in international conferences across Egypt, France, and Saudi Arabia highlights his global engagement. His work on swarm intelligence and nanofluid modeling reflects both theoretical significance and technological relevance.

  5. Authorship of Academic Books:
    Author of three technical books with Lambert Academic Publishing, which extend his research to a broader academic audience, enhancing educational and professional value.

⚠️ Areas for Improvement:

  1. Greater Industry Collaboration:
    While his academic output is exceptional, engaging in more industry-linked projects (e.g., smart grids, AI in civil infrastructure) could boost the applied relevance of his work.

  2. Editorial and Review Roles:
    Taking on editorial positions in leading journals or acting as a regular peer reviewer could enhance his visibility and influence in the academic publishing landscape.

  3. Funding and Grants:
    Participation in or leadership of internationally funded research programs (such as Horizon Europe or NSF collaborations) would strengthen his research infrastructure and international profile.

🎓 Education:

Prof. El-Shorbagy earned his Ph.D. in Engineering Mathematics from the Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Egypt, in July 2013. His doctoral thesis, “A Study of Some Numerical Optimization Methods to Solve Multiobjective Mathematical Programming Problems”, focused on advanced optimization algorithms. Prior to this, he completed his M.Sc. in February 2010 at the same institution, where he presented a thesis titled “Hybrid Particle Swarm Optimization Algorithm for Multiobjective Optimization”. Both degrees reflect his specialization and depth in engineering mathematics with emphasis on numerical methods and artificial intelligence. Throughout his academic formation, he was mentored by prominent researchers in the fields of computational mathematics and optimization. His educational background has laid a solid foundation for his subsequent contributions to academia, allowing him to merge theoretical principles with cutting-edge applications in engineering and data-driven modeling.

🧑‍🏫 Experience:

Prof. El-Shorbagy has amassed over 15 years of academic and research experience. He currently holds the position of Professor in the Department of Mathematics, College of Science and Humanities Studies, at Prince Sattam Bin Abdulaziz University in Saudi Arabia. His career began in Egypt, where he contributed to both teaching and research at Menoufia University. Over the years, he has developed and delivered undergraduate and postgraduate courses in mathematics, optimization techniques, numerical methods, and computational intelligence. In parallel, he has maintained an active research agenda, collaborating with global institutions and publishing extensively in top-tier journals. He is well-versed in supervising theses and projects related to AI-based optimization methods and engineering simulations. Prof. El-Shorbagy is also a frequent speaker at international conferences and has been part of organizing committees, reviewer boards, and technical panels—proving his leadership in academic and scientific communities.

🔬 Research Focus:

Prof. El-Shorbagy’s research revolves around optimization theory and its practical application to engineering and mathematical models. His primary focus is on developing and enhancing numerical methods for solving multiobjective optimization problems using artificial intelligence. Key techniques in his portfolio include Particle Swarm Optimization (PSO), Genetic Algorithms (GA), Trust-Region Methods, and hybrid models that integrate local search strategies. Recently, he has extended his expertise to smart materials, nanofluids, energy optimization, and AI-driven modeling in civil and mechanical engineering systems. His interdisciplinary approach bridges theory and practice, using computational models to solve complex real-world problems such as wind turbine placement, reactive power compensation, and fluid dynamics. Prof. El-Shorbagy’s research is not only high in theoretical impact but also has broad industrial and environmental relevance, making him a valuable contributor to applied sciences and engineering optimization domains.

📰 Publications Top Notes:

  • 🧬 Integrating PSO with GA for Solving Nonlinear Optimization Problems, JCAM, 2011

  • 🐝 Local Search-Based Hybrid PSO for Multiobjective Optimization, Swarm & Evolutionary Computation, 2012

  • 💧 Darcy Ternary-Hybrid Nanofluid Flow with Induction Effects, Micromachines, 2022

  • ⚗️ Green Synthesis of ZnO–CuO Nanoparticles and Cytotoxicity, Scientific Reports, 2021

  • 🧱 Glass Fiber-Reinforced Concrete: Mechanical and Microstructure Analysis, Materials, 2022

  • 🌬️ Optimization of Wind Turbines Siting Using GA-Based Local Search, Renewable Energy, 2018

  • 🔥 Hybrid Nanofluid Flow with Hall Current and Chemical Reaction, Alexandria Eng. Journal, 2022

  • 🌴 Coconut Fiber Reinforced Concrete: State-of-the-Art Review, Materials, 2022

  • MHD Stagnation Point Flow with Joule Heating and Convective Effects, Case Studies in Thermal Eng., 2021

  • ♻️ Concrete with Waste Glass and Recycled Aggregate Substitution, Materials, 2022

🧾 Conclusion:

Prof. Mohammed Abd El-Rahman El-Shorbagy Hassan is a highly suitable candidate for the Best Researcher Award. His consistent and high-quality contributions to engineering mathematics and optimization, impactful publication record, and innovative research approaches mark him as a leading scholar in his domain. By expanding his engagement with industry and international grant opportunities, he could further elevate his already outstanding academic profile. He exemplifies the blend of research excellence, innovation, and practical relevance that such an award seeks to recognize.