Guangxun Meng | Cancer Immunology | Cancer Cell Biology Award

Prof. Guangxun Meng | Cancer Immunology | Cancer Cell Biology Award

Prof. Guangxun Meng , Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences , China

Guangxun Meng is the Lab Chief of the Innate Immunity Lab at the Shanghai Institute of Immunity and Infection, CAS, China. He specializes in mucosal immunology and inflammasome research, with a focus on barrier organs such as the gut, lung, and skin. His work is instrumental in understanding viral infections, inflammation, and cancer, particularly within the respiratory system and gut. With numerous high-impact publications, Guangxun’s contributions to immunology have significantly advanced understanding in innate immunity and the inflammasome’s role in disease. His ongoing research projects include exploring novel therapeutics for cancer suppression and viral infections.

Publication Profile:

Google Scholar

Strengths for the Award:

Dr. Guangxun Meng has made substantial contributions to the fields of mucosal immunology, inflammation, and cancer, particularly through his work on the inflammasome and innate immunity. His research has been pivotal in understanding the roles of NLRP3 and IL-18 in immune responses and cancer suppression. Dr. Meng’s work has led to significant advancements, such as the discovery of short IL-18 and its mobilization of NK cells to suppress tumor growth. His innovative work, which links microbiota, inflammasomes, and viral immunity, has been published in prestigious journals like Nature Immunology and Nature Communications. The breadth of his patents, including those targeting viral infections, further highlights his innovative contributions to the field.

Areas for Improvement:

While Dr. Meng’s research has made significant strides in understanding immune responses in cancer, further investigation into the therapeutic applications of his findings would be beneficial. Expanding collaborations with clinical researchers could bridge the gap between basic science and clinical oncology, potentially leading to novel treatment options.

Education:

Guangxun Meng earned his advanced degrees at leading institutions, where he developed a strong foundation in immunology and molecular biology. He completed his postdoctoral training in immunology and infectious diseases, deepening his understanding of immune responses to viral infections and their regulation in mucosal tissues. Throughout his career, he has focused on integrating experimental immunology with clinical insights to discover new therapeutic strategies, making him a prominent figure in his field.

Experience:

Guangxun Meng’s extensive research experience spans key roles in both academia and collaborative projects with the biotech industry. As Lab Chief at the Shanghai Institute of Immunity and Infection, he leads a team focused on understanding the mechanisms of mucosal immunity and inflammation. His research spans multiple areas, including cancer immunotherapy, viral infections, and the inflammasome’s role in diseases like sepsis. Over the years, Guangxun has worked with leading immunologists worldwide, contributing significantly to research on innate immunity, microbial interactions, and cancer biology.

Awards and Honors:

Guangxun Meng has received numerous accolades throughout his career for his groundbreaking contributions to immunology and cancer research. He is a respected member of several prestigious scientific societies, including the Society for Mucosal Immunology and the American Association of Immunologists. His work has led to significant advances in the fields of inflammation and viral infections, and his lab continues to receive recognition for the potential clinical applications of its research. His contributions to immunology have made him a leading expert in the study of inflammasomes and mucosal immunity.

Research Focus:

Guangxun Meng’s primary research focuses on mucosal immunology, inflammasome activation, and innate immunity. His work investigates the immune responses in barrier organs like the gut, skin, and lungs, particularly in relation to viral infections, inflammation, and cancer. He is exploring the therapeutic potential of novel molecules like short IL-18 and the role of microbiota-derived metabolites, such as short-chain fatty acids, in immune modulation. His lab’s research also includes the development of new strategies to target inflammasome activation and improve responses to infections and cancer.

Publications Top Notes:

  1. Short IL-18 generated by caspase-3 cleavage mobilizes NK cells to suppress tumor growthNature Immunology 📄
  2. Interleukin-1 prevents SARS-CoV-2-induced membrane fusion to restrict viral transmissioneLife 🦠
  3. Anti-influenza activity of CPAVM1 protease secreted by Bacillus subtilis LjM2Antiviral Res. 💊
  4. Antibody-mediated spike activation promotes cell-cell transmission of SARS-CoV-2PLoS Pathogens 🧪
  5. cFLIPS regulates alternative NLRP3 inflammasome activation in human monocytesCell Mol Immunol 💡
  6. TRAF6-TAK1-IKKβ pathway mediates TLR2 agonists activating “one-step” NLRP3 inflammasomeCytokine 🔬
  7. TAK1 Deficiency in Macrophages Increases Host Susceptibility to Leishmania InfectionInfectious Microbes & Diseases 🦠
  8. Function of NLRP3 in Anti-influenza Viral InfectionViruses 🦠
  9. Microbiota-derived acetate enhances host antiviral response via NLRP3Nature Communications 🌿
  10. SARS-CoV-2 spike engagement of ACE2 primes S2’site cleavage and fusion initiationProc Natl Acad Sci USA 🦠

Conclusion:

Dr. Guangxun Meng is highly deserving of the Research for Cancer Cell Biology Award. His pioneering work in immunology, inflammasomes, and cancer biology represents a critical contribution to the understanding of immune responses in cancer. His research promises to have significant implications for both cancer therapy and infectious disease control.

 

 

 

Yimin Zhu | Immunology Cellular Interactions | Women Researcher Award

Prof. Yimin Zhu | Immunology Cellular Interactions | Women Researcher Award

Prof. Yimin Zhu , Suzhou Institute of Nanotechnology, Chinese Academy of Sciences , China

Prof. Yimin Zhu is a distinguished researcher in bioengineering, specializing in cancer therapies, biomaterials, and peptide screening platforms. With a background in both clinical medicine and biotechnology, she bridges the gap between medical applications and cutting-edge biotechnological innovations. Prof. Zhu completed her master’s in Clinical Medicine from Tianjin Medical University in 1996 and a Ph.D. in Biochemistry from the National University of Singapore in 2005. She has made significant contributions to cancer immunotherapy, drug delivery systems, and biomarker identification. Prof. Zhu’s work has led to over 30 first-author/co-corresponding publications in leading scientific journals, and she holds more than 20 patents. She currently holds a professorship at Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, where her research continues to advance cancer treatments through novel molecular mechanisms and drug delivery platforms.

Publication Profile:

Scopus

Strengths for the Award:

  1. Interdisciplinary Expertise: Prof. Yimin Zhu has a unique blend of clinical medicine and advanced biotechnology expertise, making her well-suited to bridge the gap between medical practice and cutting-edge cancer research. Her background in both the clinical and research fields allows her to tackle cancer therapies from multiple angles.
  2. Impactful Research: Prof. Zhu’s research focuses on critical areas in cancer therapy, such as peptide-based immunotherapy, tumor mechanisms, drug delivery systems, and biomarker discovery. She has published over 30 high-impact papers in leading journals, showcasing her leadership in the field.
  3. Innovative Contributions: She has made substantial contributions to developing peptide-based bispecific CAR T cells and innovative drug delivery systems, with several patents granted. These innovations hold great promise for advancing cancer therapy and improving patient outcomes.
  4. Support and Funding: Prof. Zhu has successfully secured substantial research funding, including multiple grants from the National Natural Science Foundation of China, supporting her groundbreaking research in cancer immunotherapy and biomaterial development.

Areas for Improvement:

  1. Broader Outreach: Although Prof. Zhu has made impressive advancements in cancer research, expanding her work’s visibility to a broader audience in the medical and biotechnology communities, as well as among the general public, could increase the impact of her innovations.
  2. Collaboration and Mentorship: Further expanding interdisciplinary collaborations, particularly with social scientists or clinicians in oncology, could strengthen the practical application of her research and increase its translation into clinical practice. Additionally, mentoring young women in STEM could increase her contribution to fostering diversity in the field.
  3. Public Engagement: Enhancing communication efforts to present her research in a more accessible format for non-experts could be a significant avenue for impact, particularly in terms of attracting additional funding and public interest in her cancer-focused work.

Education:

Prof. Yimin Zhu’s educational journey reflects her interdisciplinary approach to bioengineering and medical science. She earned her Master’s degree in Clinical Medicine from Tianjin Medical University in 1996, where she initially focused on medical practice, gaining hands-on experience as a resident and consultant in Neurology. Her passion for scientific research led her to pursue a Ph.D. in Biochemistry from the National University of Singapore, completed in 2005. This transition to biochemistry allowed her to explore molecular biology, cancer research, and biotechnology. Prof. Zhu’s postdoctoral work at the University of California, Santa Barbara, in Chemical Engineering, further honed her expertise in nanotechnology, bioengineering, and therapeutic innovations. This broad educational foundation, combining clinical experience with cutting-edge research, has uniquely positioned her as a leader in cancer bioengineering and drug delivery systems.

Experience:

Prof. Yimin Zhu’s diverse experience spans both clinical medicine and high-impact research. Between 1996 and 2000, she worked as a resident and consultant doctor in Neurology, which provided a strong foundation in patient care and medical science. Transitioning to research, she served as a research fellow at the National University of Singapore from 2003 to 2005, focusing on biochemistry and cancer-related molecular mechanisms. Prof. Zhu further developed her expertise during her postdoctoral training in the Chemical Engineering Department at the University of California, Santa Barbara, where she explored the intersection of chemical engineering, nanotechnology, and therapeutic interventions. Since joining the Suzhou Institute of Nano-Tech and Nano-Bionics in 2008, she has been a professor, where she leads innovative research in peptide-based cancer therapies, immunotherapy, and drug delivery systems. Her extensive academic background and practical experience have earned her numerous patents and substantial research funding.

Research Focus:

Prof. Yimin Zhu’s research primarily focuses on bioengineering for cancer treatment, peptide screening platforms, and targeted drug delivery systems. Her work involves identifying molecular mechanisms behind tumor cell behavior and developing innovative methods for cancer diagnosis and therapy. She is dedicated to advancing cancer immunotherapy, particularly through the development of peptide-based bispecific CAR T cells targeting key proteins like EGFR and tumor stroma. Prof. Zhu’s research aims to enhance the efficacy of cancer treatments while minimizing side effects. Her studies also explore the development of smart delivery systems, such as extracellular vesicle-based nanodrugs, to improve the precision and effectiveness of drug delivery to tumor sites. Additionally, her work delves into the identification of cancer biomarkers, offering new ways to predict tumor metastasis and optimize treatment regimens. By combining molecular biology, nanotechnology, and biotechnology, Prof. Zhu’s research holds great promise for advancing personalized cancer care.

Publications Top Notes:

  • The peptide-based bispecific CAR T cells target EGFR and tumor stroma for effective cancer therapy 🧬
  • Develop a PD-1-blockade peptide to reinvigorate T-cell activity and inhibit tumor progress 💉
  • Natural killer cells contribute to ‘hot’ tumor regression in the allergic inflammatory environment 🦠
  • Identification of cancer protein biomarker based on cell specific peptide and its potential role in predicting tumor metastasis 🔬
  • Extracellular Vesicle‐Based Nanodrug Delivery 💊
  • Inhibition of Autophagy Promotes the Elimination of Liver Cancer Stem Cells by CD133 Aptamer-Targeted Delivery of Doxorubicin 🧫
  • Dermatophagoides pteronyssinus allergen Der p 22: Cloning, expression, IgE-binding in asthmatic children, and immunogenicity 🌿
  • Reforming the Chimeric Antigen Receptor by Peptide Towards Optimized CAR T Cells With Enhanced Anti-Cancer Potency and Safety 🦠
  • Smart delivery of poly-peptide composite for effective cancer therapy 💡
  • The inhibition of ABCB1/MDR1 or ABCG2/BCRP enables doxorubicin to eliminate liver cancer stem cells ⚙️

Conclusion:

Prof. Yimin Zhu’s research excellence, particularly in cancer therapy, peptide-based immunotherapy, and novel drug delivery systems, positions her as a highly deserving candidate for the Research for Women Researcher Award. Her interdisciplinary approach, groundbreaking innovations, and leadership in publishing high-impact scientific papers make her a trailblazer in the field of bioengineering. By addressing the areas for improvement, particularly in outreach and mentorship, Prof. Zhu could amplify her contributions even further, inspiring the next generation of women scientists and advancing the fight against cancer.

 

 

 

Isabelle Brigaud | Immunology Cellular Interactions | Best Researcher Award

Mrs. Isabelle Brigaud | Immunology Cellular Interactions | Best Researcher Award

Mrs. Isabelle Brigaud , CNRS IS2M , France

Isabelle Brigaud is an experienced research engineer at CNRS IS2M, Mulhouse, France. With a strong foundation in molecular biology, biochemistry, cell biology, and bioinformatics, she specializes in the study of biomaterials, tissue engineering, and immunology. Brigaud has made significant contributions to understanding the foreign body response to materials such as silicone breast implants and injectable hydrogels. Her expertise spans molecular cloning, protein analysis, and the development of study models using ex vivo, animal models (e.g., zebrafish, Drosophila, and Spodoptera littoralis), and advanced imaging techniques like confocal microscopy. Passionate about collaborative research, she is involved in managing cross-functional projects, fundraising, and mentoring students. Brigaud holds CNU qualifications in cell biology and physiology and is an advocate for continuous technical training. Her research has resulted in numerous high-impact publications in the field of biomaterials and molecular biology.

Publication Profile:

Orcid

Strengths for the Award:

  1. Diverse and High-Impact Research Focus: Isabelle Brigaud’s research spans multiple biological disciplines, including molecular biology, biochemistry, cell biology, and biophysics, showing a broad and in-depth understanding of biological processes. This is particularly demonstrated through her contributions to studies in immunogenic responses in breast implant tissue, the molecular mechanisms of endometriosis, and cellular interactions with biomaterials, indicating her versatility in tackling diverse biological challenges.
  2. Strong Publication Record: Brigaud has a consistent publication history in high-impact journals, such as Biomaterials, Nature Communications, Acta Biomater, and PRS. These publications focus on important topics like cellular migration, biomaterial interaction, and regenerative medicine, all of which are at the forefront of current biomedical research. Her work on the interaction of biomaterials with tissues, especially focusing on inflammatory responses, positions her as a leading researcher in the field.
  3. Expertise in Advanced Techniques: She is proficient in a wide range of cutting-edge techniques, from molecular biology techniques like RNAseq and PCR to cell biology methods, including cell differentiation and functional pharmacology. This technical expertise is key for producing reliable, reproducible results, which is crucial for advancing scientific knowledge.
  4. Cross-Disciplinary Collaboration: Brigaud’s experience in collaborating across various research teams, institutions, and international boundaries highlights her ability to contribute effectively to multidisciplinary research projects. She has also demonstrated leadership in supervising and training students and researchers, underscoring her role as a mentor and leader in the research community.
  5. Management and Funding Expertise: As a research engineer and project manager, she has led several important projects, such as those related to soft tissue reactions to implants and muscle regeneration. Her experience in fundraising and project management indicates strong organizational and leadership skills, both of which are crucial for steering complex research initiatives toward success.
  6. Commitment to Health-Related Research: Her work on health-related issues, such as the effects of silicone breast implants on immune responses and the management of endometriosis symptoms through exercise, shows a direct impact on improving human health. Her research addresses real-world health challenges, making it highly relevant and applicable to clinical settings.

Areas for Improvement:

  1. Broader Dissemination of Findings: While Brigaud has an impressive publication record, there is a potential for more dissemination of her findings to the broader scientific community, especially through high-visibility conferences and workshops. Increased visibility could attract more collaborative opportunities and funding for her projects.
  2. Expanding Research Focus on Novel Therapeutic Applications: Brigaud’s research has already significantly contributed to understanding biomaterials and cell interactions. Further expansion into therapeutic applications, such as designing and testing novel drug delivery systems or regenerative therapies, could strengthen her profile as a researcher with direct clinical and pharmaceutical applications.
  3. Increased Focus on Large-Scale Collaborative Projects: While Brigaud has demonstrated leadership in individual projects, engaging in larger, multi-institutional collaborative projects could provide even more resources and amplify the impact of her research on a global scale.
  4. Enhancing Outreach to Broader Audiences: Given her expertise in addressing important clinical and biomedical issues, there may be an opportunity for Brigaud to engage with broader non-specialist audiences, including through public science communication platforms, to make her work more accessible to the general public.

Education:

Isabelle Brigaud holds a PhD in Molecular Biology and Insect Physiology from Jussieu, Paris VI, awarded with first-class honors in 2008. She also completed a Master 2 in Integrative Biology and Physiology, specializing in adaptation to the environment, and a Master 1 in Population and Ecosystem Biology and Ecophysiology, both from Jussieu, Paris VI, with honors. Brigaud has expanded her academic credentials with postdoctoral research experiences at the University of Freiburg, Germany (2012-2014), focusing on the cytoskeleton organization in zebrafish development. Prior to that, she conducted research at CNRS/INSERM in Lyon, France (2009-2011), where she studied the plasticity of cell morphology during Drosophila oogenesis. Her academic journey reflects a deep commitment to understanding molecular biology, cell biology, and biochemistry, which has shaped her research trajectory and expertise in biomaterials and tissue engineering.

Experience:

Isabelle Brigaud has extensive experience in molecular biology, cell biology, and biochemistry. She has worked at CNRS IS2M, Mulhouse, France, since 2019 as a research engineer, managing biomolecule platforms and leading studies on the foreign body response to silicone implants and injectable hydrogels. Brigaud previously held postdoctoral research positions at the University of Freiburg, Germany, and CNRS/INSERM, Lyon, France, where she investigated cytoskeletal dynamics in zebrafish lateral line development and cell morphology plasticity during Drosophila oogenesis. During her PhD at INRAE, Versailles, she focused on pheromone detection mechanisms in pest moths, an experience that formed her expertise in molecular biology and insect physiology. In addition to her hands-on research, Brigaud is involved in cross-functional project management, collaborative teamwork, and student supervision, demonstrating strong leadership skills and a passion for advancing scientific knowledge.

Awards and Honors:

Isabelle Brigaud’s work has been recognized through several prestigious publications and her contributions to the fields of biomaterials and molecular biology. Her research on the foreign body response to silicone breast implants and injectable hydrogels has made significant strides in understanding tissue regeneration and inflammatory responses. As an active member of the research community, she has been involved in multiple high-impact journal articles published in prominent scientific journals such as Biomaterials, Acta Biomaterialia, and Nature Communications. Although specific awards are not detailed in her profile, her extensive publication record, including multiple first-author and co-author contributions, highlights her ongoing influence in the scientific community. Brigaud’s commitment to advancing knowledge in biomaterials, molecular biology, and tissue engineering is further demonstrated through her leadership roles in cross-disciplinary projects, mentoring students, and managing research collaborations.

Research Focus:

Isabelle Brigaud’s research focuses on the intersection of molecular biology, biomaterials, and tissue engineering, with a specific interest in understanding the foreign body response to implants and regenerative therapies. Her work explores the immune reactions induced by materials like silicone breast implants and injectable hydrogels, aiming to improve tissue regeneration and reduce inflammation. Brigaud’s expertise includes molecular cloning, protein analysis, cell culture, and advanced imaging techniques, all of which she applies to study cell behavior, tissue interactions, and the effects of materials on cellular processes. She uses animal models, including zebrafish and Drosophila, to investigate cell morphology plasticity and mechanotransduction. Her focus also extends to the development of drug delivery systems and the role of extracellular matrix in inflammation and tissue healing. Brigaud’s collaborative approach to research has led to significant advances in the study of immunology, regenerative medicine, and biomaterials.

Publications Top Notes:

  • Brigaud I et al., 2024. Breast implant silicone exposure induces immunogenic response and autoimmune markers in human periprosthetic tissues. Biomaterials 🔬💉
  • Ouedraogo C et al., 2024. Fabrication and characterization of thin self-rolling film for anti-inflammatory drug delivery. Colloids Surf B Biointerfaces 💊🧬
  • Escriva-Boulley G et al., 2023. Effects of physical activity and endometriosis-based education program delivered by videoconference on endometriosis symptoms: the CRESCENDO program. Trials 🏃‍♀️🩺
  • Brigaud I et al., 2020. Surface texturization of breast implants impacts extracellular matrix and inflammatory gene expression in asymptomatic capsules. PRS 🦠🔬
  • Wakhloo NT et al., 2019. Actomyosin, vimentin and LINC complex pull on osteosarcoma nuclei to deform on micropillar topography. Biomaterials 🦴🔬
  • Pieuchot L et al. 2018. Curvotaxis directs cell migration through cell-scale curvature landscapes. Nature Commun. 🌍🧬
  • Brigaud I et al. 2017. Synergistic effects of BMP-2, BMP-6 or BMP-7 with human plasma fibronectin onto hydroxyapatite coatings: A comparative study. Acta Biomater. 🧫
  • Brigaud I et al., 2015. TGFbeta/activin signaling induces epithelial cell flattening during Drosophila oogenesis. Biol Open 🦗💡
  • Montagné N et al., 2012. Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis by heterologous expression in Drosophila. European Journal of Neuroscience 🦋👃
  • Montagne N et al.,2011. Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis. Chemical Senses 🦋💨
  • Brigaud I et al., 2009. Identification of an atypical insect olfactory receptor subtype highly conserved within noctuids. FEBS Journal 🦗👃
  • Brigaud I et al. 2009. Cloning and expression pattern of a putative octopamine/tyramine receptor in antennae of the noctuid moth Mamestra brassicae. Cell and Tissue Research 🦋🧬

Conclusion:

Isabelle Brigaud is undoubtedly a strong contender for the Research for Best Researcher Award. Her multifaceted expertise, robust publication record, and impactful contributions to molecular biology, cell biology, and biochemistry, particularly in the context of health applications, position her as a leader in her field. With her proven ability to manage large-scale research projects and mentor the next generation of scientists, she continues to make significant strides in biomedical research. By focusing on increasing the visibility of her findings and expanding her research into therapeutic domains, Brigaud could further elevate her already outstanding career.