Takwa Wannassi | Plant pathology | Best Researcher Award

Dr. Takwa Wannassi | Plant pathology | Best Researcher Award

Dr. Takwa Wannassi, CRRA Sidi Bouzid, Tunisia

Dr. Takwa Wannassi is a dedicated plant protection specialist and postdoctoral researcher at the Regional Center of Agricultural Research in Sidi Bouzid, Tunisia. With a Ph.D. in Plant Protection and Environment and an Engineering Degree in Horticulture, she brings advanced expertise in entomology, plant-microbe interactions, and sustainable agriculture. Her work is primarily focused on integrated pest management and ecological approaches to crop protection, particularly in Mediterranean agroecosystems. Dr. Wannassi has authored several impactful scientific publications and has contributed significantly to the understanding of invasive pest dynamics, particularly the apricot seed wasp. She plays a crucial role in the international PRIMA project “REVINE,” where she coordinates field trials, mentors students, and collaborates across scientific disciplines. Her dedication to sustainable farming solutions, her extensive research record, and her collaborative spirit make her a strong candidate for the Best Researcher Award.

Publication Profile: 

Google Scholar
Scopus
Orcid

Education:

Dr. Takwa Wannassi holds a Ph.D. in Plant Protection and Environment from Sousse University, Higher Institute of Agronomic Sciences of Chott Mariem (ISA-CM), completed in December 2022. Her doctoral work centered on invasive species and sustainable pest management in Tunisia, particularly the apricot seed wasp Eurytoma samsonowi. She also holds an Engineer Degree in Horticulture with a specialization in Plant Protection, earned in July 2017 from the same institution. Her academic journey reflects a consistent focus on understanding ecological challenges in agriculture and developing innovative, sustainable solutions. Through both degrees, she acquired hands-on skills in molecular biology, field experimentation, pest identification, and biological control. Her academic excellence laid the foundation for her impactful contributions in agricultural research and sustainability science in the Mediterranean region.

Experience:

Since January 2025, Dr. Takwa Wannassi has been serving as a postdoctoral fellow at the Regional Center of Agricultural Research in Sidi Bouzid (CRRA), Tunisia, contributing to the international PRIMA Project “REVINE.” Her responsibilities include coordinating the research project, supervising graduate students, conducting field and lab trials, and analyzing data using R. Her work spans genomic analysis, molecular diagnostics, pest ecology, and microbiome studies. Previously, during her Ph.D., she gained extensive experience in pest ecology, molecular biology, and entomology, particularly in relation to invasive pests such as Eurytoma samsonowi. Dr. Wannassi also collaborates with international institutions, including during a research fellowship in Canada. She is proficient in preparing scientific publications and has presented her findings at major international conferences. Her multidisciplinary approach and leadership in sustainable agriculture research have earned her recognition at both national and international levels.

Awards and Honors:

Dr. Takwa Wannassi has received several accolades in recognition of her contributions to agricultural science and research. In 2019, she earned the Best Poster Award at the Tunisia-Japan Symposium on Science, Society and Technology (TJASSST) for her research on pest behavior and pheromone-based management strategies. That same year, she was granted a Research Fellowship in Canada, allowing her to work at the University of Victoria, British Columbia for two months, enhancing her international research exposure and collaboration. Her continuous efforts in sustainable pest management, microbiome studies, and plant-pathogen interaction have positioned her as a promising researcher in plant protection. She is frequently invited to contribute to scientific conferences and peer-reviewed journals. Her achievements underline her scientific innovation, dedication to eco-agriculture, and her potential as a future leader in Mediterranean agricultural research.

Research Focus:

Dr. Takwa Wannassi’s research centers on plant protection, pest ecology, biological control, and plant-microbiome interactions, with a strong focus on sustainability. Her main scientific interest lies in understanding the behavior and biology of invasive pests like Eurytoma samsonowi, a major threat to apricot production in Tunisia. She utilizes molecular tools, including 16S rRNA sequencing, to explore bacterial communities and Wolbachia infections in pest populations. Additionally, she investigates the role of beneficial rhizobacteria and microbial consortia in disease suppression and grapevine health as part of the PRIMA “REVINE” project. Through multidisciplinary approaches, she integrates entomology, microbiology, and bioinformatics to develop innovative pest management strategies aligned with climate-smart agriculture. Her goal is to promote ecosystem services, biodiversity, and resilience in Mediterranean cropping systems through regenerative and eco-friendly practices.

Publications Top Notes: 

  1. Insights on the bioecology of the invasive apricot seed wasp Eurytoma samsonowi in Tunisia (Biologia, 2023)

  2. Emergence of the apricot seed wasp Eurytoma samsonowi as an economic pest of apricots in Tunisia (Phytoparasitica, 2022)

  3. Prevalence of Wolbachia infection in field populations of the apricot seed wasp (International Microbiology, 2024)

  4. Exploration of bacterial composition and diversity within Eurytoma samsonowi via 16S rRNA sequencing (Symbiosis, 2025)

  5. Harnessing a Microbial Consortium and Compost to Control Grapevine Pathogens (Horticulturae, 2025)

  6. Investigating the potential role of beneficial rhizobacteria for grapevine health and growth (Frontiers in Sustainable Food Systems, 2025)

  7. Biocontrol Assessment of Trichoderma Species on Tomato Crops Infested by Curvularia Spicifera (Frontiers, 2025)

  8. Divergent bacterial abundance and diversity in Eurytoma samsonowi revealed by 16S rRNA (Biochem & Microbiology Congress)

  9. Assessment of damage by Eurytoma samsonowi on apricot fruits in Tunisia (INAT Symposium Poster, 2018)

  10.  Delta traps with virgin females attract Eurytoma samsonowi males: Pheromone control potential (TJASSST, 2019)

Conclusion:

Dr. Takwa Wannassi is an emerging leader in plant protection and agroecology, with a proven record of excellence in research, publishing, and project management. Her work on invasive pest control, microbial consortia, and regenerative viticulture directly addresses critical challenges in Mediterranean and global agriculture. Her multidisciplinary approach, international recognition, and active mentorship highlight her readiness for continued leadership in science. She is highly suitable and deserving of the Best Researcher Award, as she exemplifies innovation, academic rigor, and a commitment to sustainable agricultural development.

Mengting liu | Cell Structure Analysis | Best Researcher Award

Assoc. Prof. Dr. Mengting liu | Cell Structure Analysis | Best Researcher Award

Assoc. Prof. Dr. Mengting liu, Xi’an Jiaotong University, China

Dr. Mengting Liu is an Associate Professor and Master’s Supervisor at the School of Electrical Engineering, Xi’an Jiaotong University. A promising scholar in advanced battery materials, she has made significant contributions to lithium-sulfur, sodium-ion, and zinc-based battery technologies. Dr. Liu holds a Ph.D. in Condensed Matter Physics from Lanzhou University and completed joint doctoral training at the Georgia Institute of Technology, under the mentorship of Prof. Gleb Yushin. As the principal investigator of several high-profile national projects, her work centers around electrolyte design, interfacial chemistry, and cathode material innovation. Dr. Liu has authored over 50 SCI papers in top-tier journals and holds more than 30 patents, reflecting her innovative contributions to electrochemical energy storage. With an H-index of 24 and successful technological transformations, she stands out as a leading young researcher shaping the future of sustainable energy materials in China and globally.

Publication Profile: 

scopus

Strengths for the Award:

  1. High-Impact Publications

    • Over 50 SCI-indexed papers in world-renowned journals such as J. Am. Chem. Soc., Advanced Materials, Energy & Environmental Science, and Nano Energy.

    • Numerous first-author and corresponding-author contributions, showcasing leadership in research.

  2. Innovation in Battery Technology

    • Pioneer in sodium-ion, lithium-sulfur, and zinc-ion battery materials, particularly focusing on interfacial engineering and electrolyte design.

    • Leads cutting-edge research in cold-environment batteries and high-voltage cathodes.

  3. Recognition and Funding

    • Principal Investigator of multiple National Natural Science Foundation of China (NSFC) projects.

    • Successfully translated 3 technologies into industrial application – indicating practical impact.

  4. Patent and Intellectual Property

    • 30+ patents applied/granted, reflecting a commitment to innovation and intellectual property creation.

  5. Academic Metrics

    • H-index: 24, indicating solid citation impact and relevance in the field.

  6. International Exposure

    • Conducted joint Ph.D. research at Georgia Institute of Technology, under the mentorship of global battery expert Prof. Gleb Yushin.

  7. Mentorship and Leadership

    • Serves as Master’s Supervisor, contributing to the training of the next generation of researchers.

🔧 Areas for Improvement:

  1. Public and Global Recognition

    • While the academic output is outstanding, broader international visibility (e.g., keynote speeches, global consortia participation) could strengthen recognition.

  2. Cross-disciplinary Expansion

    • Exploring AI-driven materials discovery or solid-state battery systems could further diversify her portfolio and enhance future relevance.

  3. Team Expansion and Postdoctoral Supervision

    • Expanding mentorship to include postdoctoral researchers and international collaborators could amplify research output and impact.

📚 Education:

Dr. Mengting Liu earned her Ph.D. in Condensed Matter Physics from Lanzhou University (2015–2021), focusing on electrochemical materials and battery interface design. During her doctoral studies, she was awarded a prestigious national scholarship for joint training at the Georgia Institute of Technology (2018–2020), where she conducted cutting-edge research in the School of Materials Science and Engineering under Prof. Gleb Yushin. Her work there focused on advanced cathode materials for sodium-ion and lithium-sulfur batteries, combining material design, characterization, and performance optimization. Her academic foundation is grounded in interdisciplinary training, bridging physics, chemistry, and materials science. Her research was pivotal in understanding phase transitions, solid–electrolyte interfaces, and novel electrolyte systems, which has set the stage for her postdoctoral and faculty research directions in energy storage. Her academic path reflects a strong alignment with innovation in clean energy technologies and fundamental materials science.

🧪 Experience:

Since November 2021, Dr. Mengting Liu has served as an Assistant Professor (Qingxiao Program A) at Xi’an Jiaotong University’s School of Electrical Engineering. She is actively involved in supervising graduate students and leading independent research in electrochemical energy storage. Prior to this role, she spent over two years at the Georgia Institute of Technology during her doctoral studies, collaborating with international experts and engaging in high-impact research. She has led several major research projects funded by the National Natural Science Foundation of China, focusing on electrolyte structure regulation and cathode performance optimization. Her industrial collaborations have led to three technological transformations and over 30 patents. Dr. Liu’s interdisciplinary background and international exposure have enabled her to contribute extensively to frontier research in lithium-ion, lithium-sulfur, and sodium-ion battery technologies. Her teaching and mentoring roles complement her research, contributing to talent development in the energy storage field.

🔬 Research Focus:

Dr. Mengting Liu’s research is centered on electrochemical energy storage, with a particular focus on sodium-ion, lithium-sulfur, and lithium-ion batteries. Her work involves the design of high-performance cathode materials, such as layered oxides and composite structures, and the development of nonflammable, stable electrolytes that enable long-life and high-temperature battery operation. She is especially recognized for her studies on interfacial engineering, including cathode-electrolyte interphases (CEI) and solid electrolyte interphases (SEI), which are critical to battery safety and longevity. Her recent research expands into entropy-regulated materials and polymer electrolytes to tackle extreme environmental conditions like ultra-low temperatures. With a holistic approach combining material synthesis, mechanism analysis, and performance validation, Dr. Liu aims to develop next-generation batteries with high energy density, long cycle life, and environmental adaptability. Her research is not only academically impactful but also industrially relevant, bridging fundamental science with practical innovation.

📄 Publication Top Notes: 

  1. 🧯 Cation−Anion Regulation in Flame-Retardant Electrolytes for Safe Na-Ion Batteries – J. Am. Chem. Soc. (2025)

  2. 🔥 Nonflammable Sulfone-Based Electrolytes for High-Temp LiNi0.5Mn1.5O4 – ACS Energy Lett. (2024)

  3. ❄️ Inorganic-Rich Interphases via Nonflammable Electrolytes for Low-Temp LiNi0.5Mn1.5O4 – Adv. Funct. Mater. (2024)

  4. Tailoring Cathode–Electrolyte Interface for High-Power Lithium–Sulfur Batteries – Nano-Micro Lett. (2025)

  5. 🔋 Wadsley–Roth Structure Engineering for High-Power Li-Ion Batteries – Energy Environ. Sci. (2024)

  6. 🔄 Biphaseto-Monophase Transition in Na0.766+xLixNi0.33-xMn0.5Fe0.1Ti0.07O2 – Carbon Energy (2024)

  7. 🛡️ Zn-Ion Channels with Double-Network Layer for Stable Zinc Anodes – Energy Storage Mater. (2024)

  8. 🔗 In-Situ Polymerized Ether Gel Electrolyte for High-Voltage Li-Metal Batteries – Adv. Funct. Mater. (2024)

  9. 🔧 Reinforced Bimetal Oxide-Based PEO Electrolytes for Stable Interfaces – Adv. Funct. Mater. (2025)

  10. ♻️ Phase-Stable and Air-Stable O3-Type Entropy-Reinforced Na Cathodes – Nano Energy (2025)

🧾 Conclusion:

Dr. Mengting Liu is exceptionally well-qualified for the Best Researcher Award. Her track record reflects a rare blend of deep theoretical knowledge, experimental expertise, and real-world application in the fast-evolving field of energy storage.

With a robust publication portfolio, a leadership role in nationally-funded projects, multiple technological transformations, and strong international training, she has already demonstrated leadership and innovation that align perfectly with the purpose of the award.

Xiaozhi Liu | Cell-Cell Communication | Best Researcher Award

Prof. Xiaozhi Liu | Cell-Cell Communication | Best Researcher Award

Prof. Xiaozhi Liu, Tianjin Fifth Central Hospital, China

Dr. Xiaozhi Liu, born on December 10, 1979, is a distinguished medical researcher and Director of the Central Laboratory at Tianjin Fifth Central Hospital. With over two decades of experience in neurosurgery and translational research, he has made substantial contributions in neural regeneration and SUMOylation-related mechanisms. Dr. Liu is a prolific academic with numerous publications in top-tier journals and active involvement in multiple National Natural Science Foundation of China projects. His international exposure as a visiting scholar at Duke University Medical Center (2012–2013) enhanced his global scientific perspective. Dedicated to neuroscience innovation, he combines advanced molecular biology techniques with clinical applications to improve patient outcomes in neurological disorders. Recognized for his scientific rigor, leadership, and innovative research approach, Dr. Liu is an exceptional candidate for the Best Researcher Award.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. Innovative Research Focus: Dr. Liu’s expertise in SUMOylation, neural regeneration, and gene regulation presents a cutting-edge approach to treating cerebral ischemia, glioblastoma, and cardiac injury.

  2. Strong Grant History: He has led multiple prestigious National Natural Science Foundation of China (NSFC) projects as both PI and co-investigator, with substantial funding and scientific merit.

  3. Impressive Publication Record: Over 15 peer-reviewed publications in impactful journals (Stroke, Aging, Neuroscience, etc.), with topics ranging from brain ischemia to cardiac injury, illustrate interdisciplinary strength.

  4. Leadership Role: As Director of the Central Laboratory, he demonstrates strong research management, mentoring, and institutional collaboration capabilities.

  5. Global Perspective: His time as a visiting scholar at Duke University Medical Center enhanced his academic and cross-cultural research competencies.

  6. Clinical & Basic Science Integration: Combines bench-to-bedside applications, especially in neurosurgery and molecular biology.

⚠️ Areas for Improvement:

  1. International Outreach: While academically robust in China, Dr. Liu could benefit from increased global collaboration, co-authorship with foreign institutes, or keynote speaking roles at international conferences.

  2. Patent & Innovation Translation: There’s potential to strengthen the translational commercialization of his research findings through patents or biotech partnerships.

  3. Public Engagement: Increasing public science communication and media presence could enhance his visibility in broader scientific and policy-making communities.

🎓 Education Background:

Dr. Xiaozhi Liu began his academic journey at Zhangjiakou Medical College, completing a degree in Clinical Medicine in 2003. He pursued his passion for neurosurgery at Tianjin Medical University, where he earned a master’s degree in 2007 and later a Ph.D. in 2017. His academic pursuit extended internationally with a one-year research fellowship at the Duke University Medical Center in the United States (2012–2013), where he specialized in neurosurgical studies. Throughout his academic training, Dr. Liu has demonstrated a deep commitment to the integration of clinical knowledge with cutting-edge biomedical research, particularly in the areas of neuroregeneration and molecular neuroscience. His academic background laid a strong foundation for his contributions to neurobiology, clinical translation, and innovative research in SUMOylation, gene expression regulation, and therapeutic interventions for neurological diseases.

🏥 Work Experience:

Dr. Liu began his clinical career as a Neurosurgery Resident at the Affiliated Hospital of the Chinese People’s Armed Police Force Medical College from 2007 to 2009. He then served as a physician in the Department of Neurosurgery at Tianjin Fifth Central Hospital until 2012. Since December 2013, he has been serving as the Director of the Central Laboratory at the same institution. In this role, he has spearheaded major research initiatives and supervised clinical translational projects in neurobiology. His leadership has been instrumental in establishing a multidisciplinary research environment that bridges clinical neuroscience and molecular biology. His extensive experience in both hospital-based patient care and laboratory-based scientific discovery places him at the intersection of clinical excellence and research innovation. His career trajectory reflects an unwavering commitment to advancing medical science and improving patient care.

🔬 Research Focus:

Dr. Xiaozhi Liu’s research centers on the molecular mechanisms of neuroregeneration, focusing particularly on SUMOylation, gene expression modulation, and neural stem cell therapy. His work explores the protective roles of SUMO-modified proteins in ischemic stroke, glioblastoma suppression, and spinal cord injury recovery. Dr. Liu investigates the role of small RNAs, mitochondrial dynamics, and oxidative stress in neurodegenerative conditions and cardiovascular diseases. His approach combines genomic, proteomic, and cell-based assays to understand the therapeutic potential of modulating cellular stress responses. Ongoing collaborations on stem cell transplantation, chromatin remodeling in cardiac diseases, and translational neuroscience further exemplify his dedication to interdisciplinary science. With an extensive list of national research grants and peer-reviewed publications, Dr. Liu remains at the forefront of biomedical innovations aimed at reversing tissue damage and enhancing neuroplasticity.

📚 Publication Top Notes:

  1. 🧠 Small ubiquitin-like modifier 3-modified proteome regulated by brain ischemia in transgenic miceStroke, 2014

  2. 🧬 Interactions of connexin 43 and aquaporin-4 in glioma-induced brain edemaMol Med Rep, 2015

  3. 🧠 Neuron-specific SUMO knockdown worsens outcome after brain ischemia in miceNeuroscience, 2017

  4. 🦴 Silencing Ubc9 suppresses osteosarcoma and enhances chemosensitivity via Connexin 43 SUMOylationInt J Oncol, 2018

  5. ❤️ SERCA2a: a key protein in the calcium cycle of heart failureHeart Fail Rev, 2019

  6. 💓 Zinc-induced SUMOylation of Drp1 protects heart from ischemia-reperfusion injuryOxid Med Cell Longev, 2019

  7. 🧠 Genetic polymorphisms and transcription in intracranial aneurysm involving NOTCH3Aging (Albany NY), 2019

  8. 🧪 Saikosaponin-d inhibits hepatoma and enhances chemosensitivity via SENP5-dependent Gli1 SUMOylationFront Pharmacol, 2019

  9. 🧬 Parkin and Nrf2 prevent apoptosis in endplate chondrocytes via mitophagyLife Sci, 2019

  10. 🧫 MitoQ protects against disc degeneration by targeting mitochondrial dysfunctionCell Prolif, 2020

🧾 Conclusion:

Dr. Xiaozhi Liu stands out as a highly qualified and deserving candidate for the Best Researcher Award. His blend of clinical neurosurgery, translational laboratory research, and molecular innovation, particularly in SUMOylation and neuroprotection, positions him at the forefront of modern biomedical science in China. With a leadership role in a major hospital, strong national research recognition, and a substantial academic footprint, he exemplifies excellence in research and mentorship.