Mohammad Shahangir Biswas | Cellular Toxicity | Best Researcher Award

Dr. Mohammad Shahangir Biswas | Cellular Toxicity | Best Researcher Award

Dr. Mohammad Shahangir Biswas | University of Science & Technology Chittagong | Bangladesh

Dr. Mohammad Shahangir Biswas is a distinguished academician and researcher in the fields of Biochemistry, Biotechnology, and Public Health, currently serving as an Assistant Professor at the University of Science and Technology Chittagong (USTC), Bangladesh. He worked as a Postdoctoral Research Associate at the University of Wisconsin-Madison, USA. His academic and research journey reflects a dedication to global health issues, molecular biology, and neurophysiology. Previously, he served as Assistant Professor at Khwaja Yunus Ali University. He has co-authored more than 48 scientific publications, including multiple first-author articles in The Lancet and other Q1 journals. With international exposure and extensive research collaborations, he brings a strong commitment to scientific excellence. Dr. Biswas is fluent in English, speaks Japanese (basic), and is a native speaker of Bangla. He is passionate about public health advancement, biomedical research, and mentoring the next generation of scientists.

Publication Profiles:

Scopus
Orcid

Education:

Dr. Biswas earned his Ph.D. in Biochemistry/Medical Science from Tokyo Medical and Dental University, supported by the prestigious MEXT Scholarship. He later completed a Postdoctoral Fellowship at the University of Wisconsin-Madison, USA, contributing to advanced research in public health and neurophysiology. Prior to his doctoral studies, he obtained his M.Sc. (Thesis) and B.Sc. (Hons.) degrees in Biochemistry and Molecular Biology from the University of Rajshahi, Bangladesh. His early academic excellence earned him multiple scholarships and positioned him for a strong career in scientific research. This strong educational foundation, combined with global exposure, has equipped him with expertise in molecular biology, public health research, and biotechnological innovation. Dr. Biswas continues to use his academic training to lead impactful research, particularly in disease burden analysis and biomedical therapeutics.

Experience:

Dr. Mohammad Shahangir Biswas brings a diverse academic and research background spanning over a decade. He served as Assistant Professor at Khwaja Yunus Ali University and later joined USTC as Assistant Professor, soon to be active as an Associate Professor. He conducted impactful postdoctoral research at the University of Wisconsin-Madison, contributing to global public health research initiatives. His teaching and research cover Biochemistry, Biotechnology, Neurophysiology, and Public Health. In addition to his teaching roles, Dr. Biswas is a Senior Collaborator in the Global Burden of Disease (GBD) Study, contributing to several high-impact international publications. His strong leadership, grant acquisition, and mentoring skills have made him an influential figure in Bangladesh’s biomedical research landscape. He remains dedicated to fostering collaborative research and academic excellence both locally and internationally.

Awards and Honors:

Dr. Biswas has received numerous awards and recognitions throughout his academic journey. Notably, he was awarded the Japanese MEXT Scholarship for his Ph.D. studies in Japan—a highly competitive and prestigious international award. His undergraduate and postgraduate achievements at the University of Rajshahi were recognized with merit-based scholarships. Additionally, he received an R&D Grant from the Ministry of Science and Technology, Bangladesh, for conducting impactful research. His research contributions to major international collaborations such as the Global Burden of Disease Study have further established his credibility and excellence in global health research. His work has been accepted in top-tier journals including The Lancet and JACC, cementing his role as a leading researcher from Bangladesh on the global stage. These honors reflect his dedication, academic brilliance, and contributions to advancing medical science, especially in the fields of public health, neurodegeneration, and biochemistry.

Research Focus:

Dr. Shahangir Biswas’s research focuses on the molecular basis of disease, global health burden, neurodegeneration, and biomedical intervention strategies. He has contributed significantly to the Global Burden of Disease (GBD) Study, publishing extensively on cancer, cardiovascular diseases, and immunization trends. His work integrates biochemistry, biotechnology, and public health, aiming to identify mechanistic pathways of diseases like Alzheimer’s and tuberculosis, and develop therapeutic interventions. Additionally, he explores snake venom biochemistry, vaccine development, and the impact of social factors such as social media on mental health. Dr. Biswas is passionate about interdisciplinary research combining molecular diagnostics, bioinformatics, and global epidemiological data. His current work includes identifying biomarkers, assessing toxicology impacts, and predicting future disease trends using large-scale datasets. With over 48 peer-reviewed publications, he maintains a strong collaboration network internationally and is a vocal advocate for translational research that informs policy and clinical practice.

Publications Top Notes: 

  1. The global, regional, and national burden of cancer, 1990–2023 – The Lancet

  2. The global burden of cancer: Forecasts to 2050 – The Lancet, Accepted

  3. Global trends in childhood vaccination coverage 1980–2023 – The Lancet, Accepted

  4. Burden of Cardiovascular Diseases in 204 countries (1990–2023) – JACC, Accepted

  5. Biochemical Profile of Bangladeshi Russell’s Viper Venom – Journal of Toxicology, Accepted

  6. Neurodegeneration in Alzheimer’s Disease: Mechanisms and Therapies – Advanced Neurology, Accepted

  7. Musculoskeletal Extrapulmonary TB in Lagos, Nigeria – Health Sci Rep, Accepted

  8. Cytokines and Vascular Inflammation in Viral Infections – Health Sci Rep, Accepted 2

  9. Social Media and Mental Health of Young Adults in Bangladesh – Health Sci Rep, Accepted

  10.  Emerging Evidence on HKU5-CoV-2 – Romanian Journal of Infectious Diseases

Conclusion:

In conclusion, Dr. Mohammad Shahangir Biswas is a highly suitable candidate for the Best Researcher Award, given his consistent and impactful contributions to biomedical and public health research, his impressive publication record in world-renowned journals, and his strong academic foundation. He has demonstrated a deep commitment to advancing scientific knowledge with global relevance and interdisciplinary reach. With continued strategic focus on leadership roles in research, mentorship, and innovation, Dr. Biswas is well-positioned not only to receive this award but also to make even greater contributions to science and society in the years ahead.

Tao Liang | Cell Death Pathway | Best Researcher Award

Mr. Tao Liang | Cell Death Pathway | Best Researcher Award

Mr. Tao Liang, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, China

Dr. Tao Liang is an accomplished medicinal chemist with deep expertise in small molecule drug design, synthesis, and pharmacological evaluation. Originating from Dancheng County, Henan Province, and currently residing in Wuhu City, Anhui Province, Dr. Liang is an Assistant Researcher at The Second Affiliated Hospital of Wannan Medical College. He earned his Doctor of Medicine from Shandong University, a leading institution under China’s “Double First-Class” initiative. With over 7 first-author SCI publications and multiple national invention patents, his research significantly contributes to targeted cancer therapies, especially involving HDAC6-selective inhibitors and Bax agonists. He has successfully led key projects funded by the Anhui Provincial Government and participated in prestigious National Natural Science Foundation of China projects. Known for both scientific depth and innovation, Dr. Liang has been recognized with national-level scholarships and university-wide honors for outstanding research achievements and academic excellence.

Publication Profile:

Orcid

✅ Strengths for the Award:

  1. High-Impact Publications

    • Authored 7 first-author SCI papers, including publications in top-tier journals like Acta Pharm Sin B (IF 14.907) and J Med Chem (IF 8.039).

    • Published extensively on HDAC6 isoform-selective inhibitors and apoptosis-targeting small molecules, a niche and cutting-edge domain in anticancer drug research.

  2. Research Leadership & Innovation

    • Serves as Principal Investigator for two key provincial research projects focusing on selective cancer therapies.

    • Demonstrated innovation in designing dual-target inhibitors (MMP/HDAC) and novel Bax agonists.

  3. National-Level Collaborations

    • Participated in major National Natural Science Foundation of China projects (5 total), totaling over RMB 2 million in funding.

    • Engaged with multidisciplinary teams and key opinion leaders, including renowned researchers such as Prof. Hao Fang and Prof. Xuben Hou.

  4. Academic Recognition

    • Winner of prestigious honors such as the National Scholarship, Outstanding Doctoral Graduate, and guest speaker at elite academic forums.

    • Recipient of 15+ national and university-level awards, including innovation prizes and scholarships.

  5. Patent Contributions

    • Holds 4 national invention patents, reflecting translational potential and real-world application of his research outputs.

🔧 Areas for Improvement:

  1. International Visibility & Collaboration

    • Current research impact is primarily within domestic circles (China). Engaging in cc, postdoctoral exchanges, or publishing with international co-authors would elevate recognition.

  2. Clinical Translation Pipeline

    • Despite strong preclinical development, there is no direct evidence of transition to clinical trials or industrial commercialization. Partnering with biotech/pharma could increase translational outcomes.

  3. Leadership Beyond Research

    • As an early-career researcher, administrative leadership (e.g., lab director, national committee memberships) may still be developing. Building a research group or mentoring PhD students would strengthen this.

  4. Interdisciplinary Expansion

    • Expertise is strong in medicinal chemistry, but cross-disciplinary projects involving AI/drug discovery, systems biology, or clinical oncology could broaden the impact.

🎓 Education:

Dr. Tao Liang received his Bachelor of Science in Pharmacy from Shandong University (2013.9–2017.6), one of China’s elite institutions under the National “985 Project” and “Double First-Class” initiative. Continuing at the same university, he pursued a Master’s and Ph.D. in Medicinal Chemistry, earning a Doctor of Medicine degree in 2022. Shandong University, renowned for its Ministry of Education Class A-rated disciplines, provided Dr. Liang with a rigorous scientific environment and access to state-of-the-art research facilities. During his academic training, he developed a strong foundation in chemical biology, natural product synthesis, and drug development. His educational journey has been marked by consistent excellence, earning him accolades like National Scholarships and Outstanding Graduate awards. His academic credentials and extensive research during his Ph.D. have positioned him as a leading young researcher in the field of medicinal chemistry in China.

💼 Work Experience:

Since August 2022, Dr. Tao Liang has been serving as an Assistant Researcher at The Second Affiliated Hospital of Wannan Medical College. His research focuses on the structural design, chemical synthesis, and pharmacological activity evaluation of small molecule drugs, particularly targeting HDAC isoforms and apoptotic regulators like Bax. He currently leads two key projects: one on HDAC6-selective inhibitors and another on Bax agonists for cervical cancer therapy, funded by the Anhui Provincial Higher Education and Health Commission respectively. Previously, he participated in several high-impact national research projects, including two funded by the National Natural Science Foundation of China, focusing on anti-cancer drug discovery. His roles have involved both independent project leadership and critical collaboration within multidisciplinary teams. Dr. Liang’s work experience showcases his capabilities in translational medicinal chemistry research and positions him as a promising talent in pharmaceutical innovation.

🏆 Awards and Honors:

Dr. Tao Liang has received more than a dozen honors for his outstanding academic and research contributions. These include the prestigious National Scholarship (2021), Outstanding Doctoral Graduate of Shandong University (2022), and multiple first-class scholarships throughout his postgraduate studies. He was a special guest speaker at prominent forums like the “Haiyou Doctoral Forum” and “Lao Xu Talks about High Strategies.” His undergraduate years were equally distinguished, earning the first prize in the ‘Challenge Cup’ and honors like “Outstanding Graduate” and “Excellent Communist Youth League Member”. His early career was also decorated with international recognitions such as the First Prize for Innovation Results at the World University Students’ Pharmaceutical Garden Forum. These awards highlight both his academic brilliance and commitment to scientific advancement, affirming his eligibility and strength as a nominee for the Best Researcher Award.

🔬 Research Focus:

Dr. Tao Liang’s research centers on the design, synthesis, and biological evaluation of small molecule inhibitors with a primary focus on histone deacetylase 6 (HDAC6) isoform-selective inhibitors and Bax agonists for cancer therapy. His work integrates computational modeling, medicinal chemistry, and pharmacodynamics to create targeted therapies aimed at epigenetic modulation and apoptosis induction in cancer cells. He has actively contributed to national-level projects exploring dual-target inhibitors (MMP/HDAC) and small molecule interventions for Mcl-1 and striatal enriched tyrosine phosphatase (STEP) targets. Dr. Liang is particularly recognized for his innovation in optimizing chemical scaffolds for selective inhibition and minimizing off-target effects. Through collaborative and independent research, he aims to address challenges in chemotherapeutic resistance and toxicity. His scientific pursuits align with current global trends in precision oncology, making significant strides in targeted therapy development and laying a foundation for future clinical translation.

📚 Publications Top Notes:

  1. 📘 Design, synthesis and evaluation of structural optimization derived HDAC6 isoform-selective inhibitorBioorganic Chemistry, 2025

  2. 📗 Targeting histone deacetylases for cancer therapy: Trends and challengesActa Pharmaceutica Sinica B, 2023

  3. 📙 Potential applications of BPFP1 in Bcl-2 protein quantification, carcinoma cell visualization, cell sorting and early cancer diagnosisEuropean Journal of Medicinal Chemistry, 2021

  4. 📕 Design, synthesis and biological evaluation of 3,4-disubstituted-imidazolidine-2,5-dione derivatives as HDAC6 selective inhibitorsEuropean Journal of Medicinal Chemistry, 2021

  5. 📘 Recent Development of Novel HDAC6 Isoform-selective InhibitorsCurrent Medicinal Chemistry, 2021

  6. 📗 HDAC–Bax Multiple Ligands Enhance Bax-Dependent Apoptosis in HeLa CellsJournal of Medicinal Chemistry, 2020

  7. 📙 Design, Synthesis, and Biological Evaluation of 2,4-Imidazolinedione Derivatives as HDAC6 Isoform-Selective InhibitorsACS Medicinal Chemistry Letters, 2019

  8. 📕 Synthesis and Antiproliferative Activity of Thiadiazole Peptidomimetic DerivativesChinese Journal of Organic Chemistry, 2016

🧾 Conclusion:

Dr. Tao Liang is highly suitable for the Best Researcher Award, especially in the early- to mid-career researcher category. His extensive publication record, innovative medicinal chemistry work, leadership in funded projects, and impressive academic recognitions make him an exemplary candidate.

SATISH SAW | Cell Death Pathway | Best Researcher Award

Mr. SATISH SAW | Cell Death Pathway | Best Researcher Award

Mr. SATISH SAW , VINOBA BHAVE UNIVERSITY, HAZARIBAG, JHARKHAND , India

Satish Saw is a Senior Research Fellow in the University Department of Physics at Vinoba Bhave University, Hazaribag, India. He is also a PGT teacher in the Jharkhand Government. His Ph.D. research focuses on “Computational and Experimental studies of Soft- and Hard-Nanomaterials.” With a strong background in Condensed Matter Physics, NanoBio Systems, and Electronics, Satish has demonstrated academic excellence through his education, research, and teaching. He has participated in numerous national and international conferences and workshops. Along with his academic endeavors, Satish has contributed to several publications in reputed journals, enhancing the field of nanomaterials, biodiesel, and environmental sciences. He has received several prestigious awards, including the Gold Medal in M.Sc. and the UGC Junior and Senior Research Fellowships. His dedication to research, along with his teaching responsibilities, highlights his well-rounded commitment to the field of physics.

Publication Profile:

Google Scholar

Strengths for the Award:

  1. Academic Excellence:
    • Gold Medal in M.Sc. and College Topper in B.Sc.: Demonstrates consistent academic achievement.
    • UGC Junior Research Fellowship (2022-2024) and Senior Research Fellowship (2024-Present) show significant recognition of his research capabilities.
    • Completion of Ph.D. with a focus on advanced topics like Condensed Matter Physics and NanoBio Systems.
  2. In-depth Research Contributions:
    • Innovative Research in Nanomaterials: Satish Saw has extensively researched nanomaterials, especially green synthesis of ZnO, Ag-ZnO, and gold nanoparticles. His work in DFT (Density Functional Theory) calculations and experimental techniques has great potential in real-world applications.
    • Cross-disciplinary Collaboration: He has co-authored several papers with diverse researchers, spanning fields like materials science, biotechnology, and environmental science.
    • Multiple research papers under review and accepted, demonstrating high productivity and ongoing contributions to the scientific community.
  3. Research Funding & Recognition:
    • Active participation in high-profile conferences, such as the 66th DAE- Solid state physics symposium, and international events like ASTM-2024 at IIT ISM and Ecotoxicology and Environmental Science Conference at Amity University. These indicate strong networking and engagement with the broader scientific community.
    • His research outputs have already found communication in reputable journals like Physics Letters A and International Journal of Hydrogen Energy, showcasing a broad research impact.
  4. Multidisciplinary Skills:
    • Knowledge of computational methods (Quantum Espresso DFT Software), experimental techniques, and software like Origin Software.
    • Proficiency in multiple areas, including Solid State Physics, Classical Mechanics, Quantum Mechanics, and Mathematical Physics.
  5. Awards & Recognition:
    • Recognition through various fellowships, including UGC JRF & SRF, which are competitive and honor the best researchers.
    • His significant contribution in identifying quasi-specific binding sites of proteins and advancing the understanding of nanomaterial applications makes him stand out.

Areas for Improvement:

  1. Broader Impact and Outreach:
    • While his research is technically impressive, expanding efforts into outreach activities, such as engaging in more public seminars or popular science communication, could further enhance the visibility of his research and its societal impact.
  2. Interdisciplinary Cross-pollination:
    • Although Satish’s research covers a wide range of topics, further interdisciplinary collaborations between bioinformatics and environmental sustainability could push his research into the global forefront, especially concerning sustainable energy solutions or eco-friendly materials.
  3. Publication Diversity:
    • While he has many ongoing or accepted papers, targeting a few high-impact factor journals in his specific fields of interest could elevate the overall reach and recognition of his work.
  4. Experimental Work Expansion:
    • Despite his extensive theoretical knowledge, additional experimental validation, such as large-scale studies or industrial collaborations, could bolster his research’s real-world applicability, especially in nanomaterials for environmental or industrial applications.

Education:

Satish Saw completed his Ph.D. in Condensed Matter Physics and NanoBio Systems at Vinoba Bhave University, Hazaribag. Prior to that, he earned his B.Ed. in Physical Science and M.Sc. in Electronics from the same institution. His undergraduate journey included a B.Sc. in Physics, followed by I.Sc. with a focus on Physics, Chemistry, Mathematics, and Economics. Throughout his academic journey, Satish consistently exhibited strong performance, culminating in his ongoing Ph.D. research in advanced nanomaterials. With a specialization in Solid-State Physics, Quantum Mechanics, and other physics-related disciplines, Satish developed an in-depth understanding of theoretical and experimental physics. His education has paved the way for his diverse academic and professional contributions, including his mastery of software like Quantum Espresso DFT and Origin Software, which aid in his research work. His knowledge base is further supported by his strong foundation in mathematical and classical mechanics.

Experience:

Satish Saw brings a wealth of experience in both academic and research fields. As a Senior Research Fellow at the University Department of Physics, Vinoba Bhave University, Hazaribag, he has conducted extensive research on nanomaterials, both computationally and experimentally. He also serves as a PGT teacher in the Jharkhand Government, where he imparts knowledge in Physics. His professional experience includes attending several prominent national and international conferences, such as the “66th DAE-Solid State Physics Symposium” and the “International Conference on Ecotoxicology and Environmental Science.” Furthermore, he has undergone specialized training in “Research Equipment in Physics & Biotechnology” at CUSB, Gaya. His deep knowledge in Solid-State Physics, Quantum Mechanics, and computational modeling has allowed him to collaborate with professionals worldwide, advancing his field. His expertise is not only theoretical but also hands-on, making him a versatile academician and researcher in modern physics.

Awards & Honors:

Satish Saw has earned numerous awards and honors in recognition of his academic and research excellence. He was awarded the Gold Medal in his Master of Science (M.Sc.) program for academic excellence. Additionally, he was recognized as the College Topper during his Bachelor of Science (B.Sc.) studies. Satish’s dedication to research has earned him the prestigious UGC Junior Research Fellowship (JRF) in January 2022, which he is currently holding. In January 2024, he was promoted to UGC Senior Research Fellowship (SRF), a testament to his continuous contribution to the field. He also qualified for the UGC NET/JRF-2020 and GATE-2020 exams. These accolades reflect his deep commitment to academic growth and research, further positioning him as a leader in his field. Satish’s consistent pursuit of excellence in both academia and research makes him a deserving candidate for various prestigious awards in his field.

Research Focus:

Satish Saw’s primary research focus lies in the computational and experimental study of nanomaterials, particularly in the fields of Condensed Matter Physics and NanoBio Systems. His Ph.D. research is centered on understanding the properties of soft- and hard-nanomaterials through Density Functional Theory (DFT) and other computational techniques, alongside experimental investigations. His work explores the structural, electronic, and optoelectronic properties of nanoparticles, specifically ZnO and Ag-ZnO composites, synthesized using green methods. Additionally, Satish investigates the antibacterial and biocompatibility aspects of these nanoparticles for potential biomedical applications. His research interests extend to the study of biodiesel, specifically its performance and emission characteristics in diesel engines using hydrogen as a secondary fuel. Satish also delves into the synthesis of iodine-doped nanocomposites, focusing on sustainable approaches for material development. His research is pivotal for advancing both materials science and environmental sustainability.

Publications Top Notes:

  1. Morphological, structural, and electronic properties of green synthesized ZnO nanoparticles by experimental and DFT+U method – A review 🌿💎 (Communicated).
  2. Effect on polytropic index, performance, and emission of diesel engine using hydrogen as gaseous fuel with additive di-tert butyl peroxide 🚗⚡ (Communicated).
  3. Identification of quasispecific binding sites of Cro-, λ- and Gal- repressor proteins within Escherichia coli bacterial and Enterobacteria phage λ viral genomes 🧬🔬 (Communicated).
  4. Green synthesis of iodine doped nano-composites using Ocimum basilicum (basil) leaf extract 🌿🔬 (Communicated).
  5. Effect on emissions, combustion, and performance characteristics of Karanja oil biodiesel and Di-tert butyl peroxide assisted using hydrogen as a secondary fuel in a diesel engine 🛢️⚙️ (Communicated).
  6. Experimental and DFT studies of Green Synthesized ZnO nanoparticles for their antibacterial and optoelectronic applications 🦠💡 (Accepted).
  7. Green synthesis of Ag-ZnO Composite nanoparticles using Ocimum basilicum (basil) leaf extract and study their antibacterial effect 🌱💊 (Under Review).
  8. Green synthesis and characterization of gold nanoparticles using leaf extract of Withania somnifera and their in vivo biocompatibility with embryonic zebrafish and antibacterial study 🌟🐟 (Under Review).
  9. Investigation on Pongamia biodiesel with di-tert butyl peroxide on emissions and performance using hydrogen fuel in a diesel engine 🚙🌱 (Under Review).

Conclusion:

Satish Saw stands out as an exemplary researcher due to his academic brilliance, research productivity, and ability to blend theoretical and experimental methodologies in cutting-edge fields like nanomaterials and nanobiotechnology. His consistent achievements, multiple publications in renowned journals, and his engagement with global scientific communities make him a strong candidate for the Best Researcher Award.