Naoki Harada | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Naoki Harada | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Naoki Harada, Osaka Metropolitan University, Japan

Naoki Harada is an Associate Professor at Osaka Metropolitan University, Japan, with extensive expertise in molecular biology, biochemistry, endocrinology, and nutrition. He earned his Ph.D. in Life Sciences from Osaka Prefecture University in 2007. Over the past two decades, Harada has made significant contributions to understanding the physiological and biochemical mechanisms underpinning metabolic diseases, particularly type 2 diabetes. His research, characterized by high citation impact (H-index of 25), centers on pancreatic β-cell function and metabolic regulation. He has published 77 peer-reviewed articles and holds a patent related to therapeutic interventions. Harada has collaborated with leading scientists like Professors Hiroshi Inui and Ryoichi Yamaji, strengthening his academic footprint in both national and international circles. A member of multiple scientific societies, Harada continues to influence the field through impactful research, industry collaboration, and educational leadership.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. Consistent Research Output

    • 77 peer-reviewed publications in reputable journals (SCI, Scopus).

    • Recent high-impact studies published in Journal of Biological Chemistry, Scientific Reports, and FASEB BioAdvances.

    • Active research profile with an H-index of 25 and over 1,785 citations.

  2. Innovative Scientific Contributions

    • Identified REDD2 as a novel therapeutic target for type 2 diabetes—bridging basic research with translational medicine.

    • Works across disciplines such as molecular biology, endocrinology, and nutritional biochemistry.

  3. Project Leadership & Industry Engagement

    • Led or participated in 14 major research projects.

    • 5 consultancy/industry-based projects, reflecting application-oriented research.

  4. Academic and Collaborative Network

    • Strong academic collaborations with Professors Hiroshi Inui and Ryoichi Yamaji.

    • Member of prestigious scientific societies (e.g., Japanese Biochemical Society, Japan Society of Nutrition and Food Science).

  5. Scientific Versatility

    • Contributions span fundamental mechanisms (e.g., oxidative stress, insulin signaling) to dietary interventions (e.g., mogrol, oleamide).

    • Demonstrates ability to bridge molecular insights with systemic physiological outcomes.

⚙️ Areas for Improvement:

  1. International Visibility and Engagement

    • Expanding participation in international conferences and editorial boards could elevate his global scientific standing.

    • Pursuing cross-border collaborations would further enrich the translational value of his work.

  2. Commercialization and Patent Activity

    • While one patent is noted, increased focus on intellectual property development and biomedical commercialization could further validate his applied research strength.

  3. Outreach and Communication

    • More active public science communication (e.g., webinars, policy advocacy, media coverage) would amplify the societal impact of his research.

🎓 Education:

Naoki Harada received his Ph.D. in Life Sciences from Osaka Prefecture University, Osaka, Japan, in September 2007. His doctoral studies laid the foundation for his interdisciplinary research in molecular biology, biochemistry, and endocrinology. Harada’s academic path was driven by a keen interest in the cellular and molecular mechanisms underlying metabolic regulation, particularly in relation to glucose homeostasis and pancreatic function. His education provided him with a solid grounding in experimental techniques, critical thinking, and scientific communication, which have become hallmarks of his later work. The institution, known for excellence in biosciences, enabled Harada to cultivate a strong research acumen. His academic training was complemented by exposure to applied research, linking basic science with clinical and nutritional applications—an approach that he has continued to emphasize throughout his career. His strong educational background plays a pivotal role in his current research endeavors and professional development.

💼 Experience:

Dr. Naoki Harada began his academic career in 2008 as an Assistant Professor at the Graduate School of Life and Environmental Sciences, Osaka Prefecture University. He was promoted to Lecturer in 2015, and subsequently to Associate Professor in 2019. Since 2022, he has served as Associate Professor at the Graduate School of Agriculture, Osaka Metropolitan University. Harada has consistently combined teaching with intensive research, mentoring graduate students while advancing his lab’s focus on metabolic diseases and endocrine physiology. His experience includes leading 14 research projects, consulting on 5 industry-linked nutrition initiatives, and co-authoring over 75 scientific papers. His experience reflects a blend of academic leadership, scientific innovation, and multidisciplinary collaboration. Notably, Harada’s role in identifying REDD2 as a therapeutic target exemplifies his contribution to translational science. He maintains strong academic partnerships and actively contributes to several professional societies, making him a respected figure in Japan’s scientific community.

🔬 Research Focus:

Naoki Harada’s research is at the intersection of molecular biology, endocrinology, and nutrition science, with a particular focus on pancreatic β-cell physiology and glucose metabolism. He investigates how oxidative stress, hormonal signals, and metabolic regulators influence insulin secretion and β-cell viability. One of his pivotal contributions is identifying the REDD2 gene as a negative regulator of β-cell function, offering novel therapeutic targets for type 2 diabetes mellitus. His studies also explore nutrient-sensing pathways, G-protein-coupled receptors, and hormonal modulation of energy metabolism. Harada’s recent work delves into the effects of dietary compounds like mogrol and oleamide on metabolic health, linking molecular mechanisms to real-world dietary interventions. His ability to bridge bench science with clinical and nutritional applications sets his research apart. Through collaborations with leading experts and high-impact publications, Harada continues to advance knowledge in the prevention and treatment of metabolic disorders.

📚 Publications Top Notes:

  • 🧬 REDD2 confers pancreatic β-cell dysfunction in high-fat diet-fed miceJournal of Biological Chemistry, 2025

  • 🦷 Androgens suppress ST3GAL1/4, modulating mucin glycosylation and microbiota in miceBioscience, Biotechnology, and Biochemistry, 2025

  • 🍟 CRTC1 in MC4R cells regulates dietary fat intakeFASEB BioAdvances, 2024

  • 💉 Insulin reduces ER stress-induced apoptosis in INS-1 β-cellsPhysiological Reports, 2024

  • 🍬 Mogrol activates GPBAR1 and insulin secretion, alleviates hyperglycemiaScientific Reports, 2024

  • 🔥 Androgen receptor suppresses β-adrenoceptor-mediated thermogenesisJournal of Biological Chemistry, 2022

  • 🏥 Age-dependent sex differences in NAFLD in TSOD and db/db micePLOS ONE, 2022

  • 🐭 Dietary oleamide attenuates obesity in caged miceBioscience, Biotechnology, and Biochemistry, 2022

  • 🌿 Curcumin targets GPR55 receptornpj Science of Food, 2022

  • 💪 Oleamide rescues muscle atrophy in small-caged miceBritish Journal of Nutrition, 2021

🧾 Conclusion:

Dr. Naoki Harada demonstrates a clear trajectory of research excellence, grounded in scientific rigor and driven by impactful biomedical questions. His ability to identify molecular mechanisms (e.g., REDD2’s role in β-cell dysfunction) and propose therapeutic directions sets him apart as a leading academic in metabolic disease research. His publication record, industry collaborations, and professional memberships underscore a mature and influential academic career.

Fei Yu | Tissue Engineering Regeneration | Best Academic Researcher Award

Dr. Fei Yu | Tissue Engineering Regeneration | Best Academic Researcher Award

Dr. Fei Yu , Shenzhen Second People’s Hospital , China

Dr. Yu Fei, a 36-year-old attending doctor in Spine Surgery at Shenzhen Second People’s Hospital, is a highly skilled medical researcher and clinician. Currently based in Shenzhen, Guangdong, he holds a Ph.D. in Orthopedics from Peking University, where he also conducted pioneering research on nerve injury regeneration. His work has garnered significant attention in the medical community, particularly in the fields of nerve repair and cartilage defect treatments. Beyond his clinical work, Dr. Yu is a master tutor at Shantou University and Anhui Medical University and an expert committee member of the Osteoporosis Branch of the China International Exchange and Promotive Association for Medical and Healthcare. His research contributions are backed by funding from prestigious organizations like the National Natural Science Foundation of China. His commitment to advancing medical science continues to position him as a thought leader in his field.

Publication Profile:

Orcid

Strengths for the Award:

Dr. Yu Fei demonstrates exceptional research capabilities, particularly in the areas of nerve regeneration, orthopedic innovations, and the repair of tissue damage. His work has led to innovative findings, such as the use of Neutrophil Peptide 1 (NP1) for sciatic nerve injury repair and the exploration of novel bioactive scaffolds for cartilage defect repair. His research is highly impactful, with multiple publications in reputable journals, including Nutritional Neuroscience, Neural Regeneration Research, and International Journal of Nanomedicine. He has secured significant research funding, including from the National Natural Science Foundation of China, further solidifying his standing in the scientific community. Additionally, his roles as a Master Tutor and an Expert Committee Member highlight his leadership in both academic and clinical settings. Dr. Yu’s ability to bridge laboratory research with clinical practice enhances the real-world applications of his findings.

Areas for Improvement:

While Dr. Yu’s research is comprehensive and impactful, further expansion into clinical trials and broader multi-center collaborations could enhance the applicability and validation of his work. Given his clinical experience, a stronger integration of real-world patient outcomes in his studies would provide valuable insights. Additionally, more cross-disciplinary collaborations with fields such as biomedical engineering or regenerative medicine could push the boundaries of his research even further. Broadening the scope of his international collaborations could also improve the global impact of his work.

Education:

Dr. Yu Fei’s academic journey is distinguished by excellence in the medical field. He earned his Doctor of Philosophy (Ph.D.) in Orthopedics from Peking University in 2019, where his groundbreaking research focused on the “Effect and Mechanism Research of Neutrophil Peptide 1 (NP1) on Repairing and Regeneration of Sciatic Nerve Injury in Rats.” Following his doctoral studies, Dr. Yu expanded his expertise during a postdoctoral fellowship at the Shenzhen PKU-HKUST Medical Center, Peking University Shenzhen Hospital from 2022 to 2024. His education also includes standardized training as a resident physician at Peking University Shenzhen Hospital. This solid foundation in both clinical and research settings allows him to bridge the gap between laboratory science and patient care, contributing significantly to his areas of specialization, including nerve regeneration and orthopedic research.

Experience:

Dr. Yu Fei’s professional experience includes diverse roles in both clinical and academic settings. He is currently an attending doctor in the Department of Spine Surgery at Shenzhen Second People’s Hospital, where he has been practicing since October 2024. Before that, Dr. Yu served as a resident physician at Peking University Shenzhen Hospital from 2019 to 2022. His time as a resident involved rigorous clinical training, which laid the groundwork for his current practice in spine surgery. In addition to his clinical responsibilities, Dr. Yu is a mentor for graduate students as a Master Tutor at Shantou University and Anhui Medical University. His leadership extends to being an expert committee member for the Osteoporosis Branch of the China International Exchange and Promotive Association for Medical and Healthcare. His vast experience allows him to integrate clinical care with cutting-edge research, fostering advances in both medical practice and academic inquiry.

Awards and Honors:

Dr. Yu Fei has been recognized with several prestigious awards for his outstanding contributions to the field of medical research. He won the second prize at the Binzhou Natural Science Excellent Academic Achievement Award in 2010 for his research on the treatment of local tissue damage caused by Fluorouracil drugs. In addition, his work on the importance of trace elements in children’s growth earned him the Third Prize for Excellent Achievements in Shandong Soft Science (2012). Dr. Yu also received the third prize for his research on maternal and infant nursing courses in higher vocational education at the Shandong Soft Science Excellent Achievement Award (2012). These accolades highlight his multifaceted expertise and ability to make a lasting impact on various aspects of medical science and education.

Research Focus:

Dr. Yu Fei’s research focuses primarily on nerve regeneration, orthopedic innovations, and the mechanisms involved in repairing tissue damage. His work on Neutrophil Peptide 1 (NP1) has revealed its potential in sciatic nerve injury repair, leading to significant advancements in regenerative medicine. Dr. Yu is also deeply invested in studying cartilage defects and exploring novel bioactive scaffolds, such as resveratrol-PLA-Gelatin, to promote cartilage repair. His research has received substantial funding from the National Natural Science Foundation of China, where he leads studies on the SIRT1/BMSCs/porous magnesium alloy scaffold system for cartilage repair via the Wnt/β-catenin signaling pathway. Additionally, his work on small molecule polypeptides and the NF-κB signaling pathway for sciatic nerve regeneration showcases his commitment to advancing clinical treatments for nerve and tissue injuries. His interdisciplinary approach blends molecular biology, materials science, and clinical applications to address complex medical challenges.

Publications Top Notes:

  1. Neutrophil peptide-1 promotes the repair of sciatic nerve injury through the expression of proteins related to nerve regeneration 🧠🔬

  2. Repair of long segmental ulnar nerve defects in rats by several different kinds of nerve transposition 🐾🦴

  3. Mechanism Research on a Bioactive Resveratrol-PLA-Gelatin Porous Nano-scaffold in Promoting the Repair of Cartilage Defect 🧬💡

  4. The Effect of Lentivirus-mediated SIRT1 Gene Knockdown in the ATDC5 Cell Line via inhibition of the Wnt Signaling Pathway 🧪🔬

  5. Wnt5a affects Schwann cell proliferation and regeneration via Wnt/c-Jun and PTEN signaling pathway ⚙️🧠

  6. Effects of SIRT1 Gene Knock-Out via the Activation of SREBP2 Protein Mediated PI3K/AKT Signal Pathway on Osteoarthritis in Mice 🐭🦴

  7. Changes in proteins related to early nerve repair in a rat model of sciatic nerve injury 🐾🧠

  8. Effects of NP-1 on proliferation, migration, and apoptosis of Schwann cell line RSC96 through the NF-κB signaling pathway ⚡🔬

  9. Microfluidic-based screening of resveratrol and drug-loading PLA/Gelatine nano-scaffold for the repair of cartilage defect 🧬💉

  10. Combining CUBIC optical clearing and Thy1-YFP-16 mice to observe morphological axon changes during Wallerian degeneration 🧠🔬

Conclusion:

Dr. Yu Fei is a highly deserving candidate for the Best Academic Researcher Award due to his outstanding contributions to medical research, particularly in nerve regeneration and orthopedic treatments. His expertise in both clinical and research settings, coupled with his leadership roles and significant funding, make him a strong contender. With continued focus on expanding his clinical applications and collaborations, Dr. Yu is poised to make even greater advancements in the medical field, making his candidacy for the award an excellent choice.