Yatendra Singh | Plant Metabolomics | Best Researcher Award

Dr. Yatendra Singh | Plant Metabolomics | Best Researcher Award

Dr. Yatendra Singh | University of Mississippi Postdoctoral Research Associate | United States

Dr. Yatendra Singh is an accomplished analytical chemist and postdoctoral researcher at the University of Mississippi, USA. He earned his Ph.D. from CSIR – Central Drug Research Institute, India, where he developed expertise in mass spectrometry and natural product chemistry. With a strong foundation in organic and analytical chemistry, Dr. Singh has actively contributed to the understanding of phytochemicals, bioflavonoids, and cardiac glycosides using cutting-edge chromatographic techniques. His work bridges the fields of pharmacognosy, metabolomics, and cancer pharmacology. He has published widely in reputed journals, highlighting his interdisciplinary approach. At the University of Mississippi, he works under Dr. Sixue Chen, further advancing plant metabolomics. Dr. Singh is known for his diligence, collaboration, and innovation in natural product research. His growing publication record and contributions to therapeutic discovery reflect his promise as a leading figure in the field of analytical and medicinal chemistry.

Publication Profiles: 

Google Scholar
Scopus
Orcid

Education:

Dr. Yatendra Singh’s educational journey reflects a solid progression in chemical and life sciences. He earned his Ph.D. in Analytical Chemistry from CSIR – Central Drug Research Institute, India, where he specialized in ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) for natural product analysis. Before his doctoral studies, Dr. Singh completed his M.S. in Organic Chemistry from M.J.P. Rohilkhand University, India, equipping him with a robust knowledge of chemical synthesis and structure elucidation. His academic foundation began with a B.S. in Zoology and Chemistry, also from M.J.P. Rohilkhand University, which provided an interdisciplinary perspective combining biological and chemical sciences. This diverse academic background allowed him to seamlessly integrate analytical chemistry techniques with pharmacognostic and pharmacological studies, ultimately contributing to novel therapeutic insights. His education has been instrumental in shaping his research trajectory toward impactful discoveries in natural product chemistry.

Experience:

Dr. Yatendra Singh is currently serving as a Postdoctoral Research Associate  in the Department of Biology at the University of Mississippi, under the mentorship of Dr. Sixue Chen. His postdoctoral work focuses on plant metabolomics, mass spectrometry-based compound profiling, and bioactive molecule discovery. During his Ph.D. at CSIR-CDRI, Dr. Singh developed core competencies in analytical chemistry techniques, especially UHPLC-MS/MS and UPLC-QTOF-MS, applying them to study flavonoids, depsides, glycosides, and plant metabolites with pharmacological significance. His research also extended into the pharmacological effects of natural compounds on cancer and inflammation. With an interdisciplinary skill set, Dr. Singh has worked across both chemistry and biology domains, collaborating with pharmacologists, botanists, and analytical scientists. His cumulative academic and postdoctoral experience underscores his strengths in research design, data analysis, compound isolation, and scientific writing, with numerous peer-reviewed publications as evidence of his impactful work in the field.

Awards and Honors:

Dr. Yatendra Singh has been recognized multiple times for his academic excellence and research potential. He was awarded the CSIR – Senior Research Fellowship (SRF) in Chemical Science—one of India’s most competitive fellowships for doctoral research. He received the UGC – Junior Research Fellowship (JRF), and He was awarded the CSIR – JRF, both prestigious fellowships granted based on national-level competitive examinations. These awards reflect his strong academic foundation and his ability to meet the highest standards in research. His contributions to science have not only resulted in high-impact publications but also signify a steady progression in recognition from Indian scientific agencies. His accolades highlight his capability to lead independent research and his commitment to furthering the scientific understanding of natural compounds with therapeutic potential. These fellowships have also provided him with the necessary resources to develop and refine his technical and analytical expertise.

Research Focus:

Dr. Yatendra Singh’s research is centered around the analytical characterization of bioactive natural products using advanced chromatographic and mass spectrometric techniques. He specializes in ultra-performance liquid chromatography (UPLC) coupled with tandem mass spectrometry (MS/MS), employing these tools to explore secondary metabolites in medicinal plants. His work often focuses on flavonoids, cardiac glycosides, depsides, and alkaloids, examining their quantification, seasonal variation, and pharmacological potential. Dr. Singh’s research lies at the interface of analytical chemistry, pharmacognosy, and pharmacology, contributing to the discovery and validation of therapeutic compounds against diseases such as cancer and inflammation. His recent postdoctoral efforts involve plant metabolomics and data-driven compound identification, integrating network pharmacology to predict molecular targets. This integrative approach positions him as a valuable contributor to both basic science and translational research. Through his work, he aims to facilitate the identification of new leads for drug development from natural sources.

Publications Top Notes:

  1. Exploring the pharmacological effect of cardiac glycosides against hepatocellular carcinoma using network pharmacology – Pharmacological Research – Natural Products, 2025

  2. The Purified Fraction of Persicaria capitata Flowers Attenuates Proliferation in A-431 Cell Lines – Pharmacognosy Magazine, 2025

  3. Pharmacognostic Evaluation of Parmelia sulcata Taylor and its Cytotoxic Effects on A Glioblastoma Cell Line – J. of Pharmacology and Pharmacotherapeutics, 2024

  4. Structure analysis of depsides, dibenzofuran and sugar derivatives from Cladia aggregata using UPLC-MS/MS – European Journal of Mass Spectrometry, 2024

  5. Exploration of new and alternative sources of targeted bioflavonoids using UPLC-MS/MS – Separation Science Plus, 2023

  6. Bone fracture-healing properties and UPLC-MS analysis of flavonoid fraction from Oxystelma esculentum – Planta Medica, 2023

  7. Characterization of Dactylorhin and loroglossin in Dactylorhiza hatagirea using UPLC-MS – International Journal of Mass Spectrometry, 2023

  8. Characterization and quantification of Cajanus scarabaeoides phytochemicals using UPLC-MS/MS – Rapid Communications in Mass Spectrometry, 2022

  9. Quantitative evaluation of cardiac glycosides in Nerium oleander using UHPLC-ESI-MS/MS – Phytochemical Analysis, 2022

  10. Aurintricarboxylic acid mitigates cigarette smoke-induced oxidative stress via NF-κB/p65 inhibition – Toxicology Mechanisms and Methods, 2022

Conclusion:

In conclusion, Dr. Yatendra Singh stands out as a talented, driven, and impactful researcher with a remarkable ability to bridge analytical chemistry and pharmacology. His growing record of publications, advanced analytical skills, and strong academic background make him a compelling candidate for the Best Researcher Award. While there is always scope for growth, particularly in research leadership and global outreach, his current achievements reflect excellence, innovation, and dedication. Dr. Singh’s contributions to the discovery and characterization of bioactive natural compounds are timely and relevant, particularly in an era emphasizing sustainable and plant-based therapeutic solutions. Recognizing his efforts through this award would not only honor his individual excellence but also encourage continued high-impact research in areas of significant scientific and societal importance. Dr. Singh embodies the spirit of innovation and academic rigor, making him highly deserving of this recognition.

Muhammad Waseem | Crop Breeding and Genetics | Best Researcher Award

Assoc. Prof. Dr. Muhammad Waseem | Crop Breeding and Genetics | Best Researcher Award

Assoc. Prof. Dr. Muhammad Waseem | College of Tropical Agriculture and Forestry Hainan University | China

Dr. Muhammad Waseem is an accomplished plant molecular biologist serving as an Associate Researcher at the College of Tropical Agriculture and Forestry, Hainan University, China. He earned his Ph.D. in Biology from Chongqing University, specializing in transcription factors and gene family analysis. With a research portfolio encompassing fruit development, phytohormones, abiotic stress, non-coding RNAs, and bioinformatics, Dr. Waseem has co-authored numerous impactful publications in high-ranking journals. His work primarily explores the molecular and genomic basis of plant adaptation, development, and stress response, particularly in key crops like tomato, rice, Brassica, and lupin. He actively mentors undergraduate and graduate students, contributing significantly to academic training and research innovation. His impressive citation count (1582), h-index (21), and strong international collaborations underscore his scientific influence. Dr. Waseem exemplifies research excellence and innovation in modern plant science.

Publication Profile: 

Orcid

Education:

Dr. Muhammad Waseem holds a Ph.D. in Biology from Chongqing University, China, where he investigated transcription factors involved in tomato development and gene families. He earned his M.Phil. in Botany from Bahauddin Zakariya University, Multan, Pakistan, building a solid foundation in plant sciences. Throughout his academic career, Dr. Waseem demonstrated a strong inclination toward molecular biology and bioinformatics, bridging experimental and computational plant science. His educational trajectory highlights a blend of classical botany and modern molecular genetics. Both institutions are known for fostering innovation, and Dr. Waseem’s academic path reflects interdisciplinary expertise across plant physiology, genomics, and stress biology. His Ph.D. and M.Phil. work laid the groundwork for his prolific research contributions to plant development and adaptation, particularly under environmental stresses, in major food and model crops.

Experience:

Dr. Waseem has amassed extensive research and mentoring experience in plant molecular biology. He has been serving as an Associate Researcher at Hainan University, China, where he leads cutting-edge projects on crop adaptation to tropical environments. He actively mentors undergraduate and graduate students, guiding them in research on phytohormones, non-coding RNAs, and transcriptomics. Previously, during his Ph.D. and M.Phil., he engaged in several collaborative and independent projects involving functional gene identification and bioinformatic analysis. His academic roles consistently included supervision, lab management, and experimental design in areas like genomics, stress response, and crop development. His international research collaborations reflect a strong network across China, Pakistan, and beyond. His recent outputs demonstrate leadership in publishing high-impact research and securing co-first or corresponding authorship in most publications. His career trajectory shows a steady progression from early researcher to a recognized scientific contributor in plant biotechnology.

Research Focus:

Dr. Waseem’s research spans plant developmental biology, stress physiology, and functional genomics, with special emphasis on fruit development, flowering regulation, abiotic stress (salinity, drought, thermal), and phytohormonal pathways. His work frequently utilizes RNA-Seq, bioinformatics, and non-coding transcriptome analysis to uncover molecular mechanisms underlying plant resilience and development. He has studied critical crops including tomato, rice, Brassica napus, and white lupin, identifying gene families such as transcription factors, PEPC, and calmodulin. His investigations often link gene expression patterns to phenotypic plasticity under adverse conditions, especially in tropical climates. Dr. Waseem is also deeply involved in transgene analysis and genome-wide association studies (GWAS), helping identify novel candidate genes for crop improvement. His research is highly collaborative and translational, aiming to enhance crop tolerance and productivity through molecular breeding and biotechnological tools. He integrates molecular biology, bioinformatics, and field-relevant data for applied plant science.

Publications Top Notes:

  1. Integrated transcriptome and metabolome insights into floral buds fertility under long-term heat stress in Brassica napus

  2. Abscisic acid-mediated salinity stress tolerance in crops

  3. Long non-coding RNAs in Brassica crops: hijackers of development and stress responses

  4. Expression and characterization of calmodulin-like genes in watermelon under abiotic stress

  5. lncRNA landscape linked to cadmium and arsenic stress in Huanghuazhan rice

  6. Genetic characterization of Solanaceae species via chloroplast rps14 gene

  7. PEPC gene family identification in Brassica napus via bioinformatics

  8. Morphological and molecular diversity of rust and host-specificity in Berberis species

  9. Omics-driven strategies for saline-smart lentils: A comprehensive review

  10.  Nitrogen metabolism and physiology in cotton on sandy soils

Conclusion:

In conclusion, Dr. Muhammad Waseem stands out as a highly competent, emerging leader in plant molecular biology and crop stress physiology. His research contributions are timely, relevant, and advancing our understanding of plant resilience under environmental stresses. His expertise in RNA biology, transcriptome/metabolome integration, and hormone-mediated stress regulation is both deep and expansive. Given his publication record, scientific impact, and dedication to mentoring, he is highly suitable for a Best Researcher Award, especially within the early- to mid-career category. With continued focus on practical innovation and research translation, he is poised to become a major contributor to global agricultural sustainability and food security.