Gang Wang | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Gang Wang | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Gang Wang , the First Affiliated Hospital of Harbin Medical University, China

Professor Wang Gang, MD, Ph.D., is a renowned general surgeon, postdoctoral researcher, and director of the Department of Oncology and Laparoscopy Surgery at The First Affiliated Hospital of Harbin Medical University, China. Specializing in pancreatic diseases, he is a prominent researcher and educator, with a focus on acute pancreatitis. He has contributed extensively to translational research, bridging molecular mechanisms to clinical innovations. As a high-level talent in Heilongjiang Province, he has published 166 works, including high-impact studies on ferroptosis and necroptosis in pancreatic diseases. With multiple editorial roles and leadership in various academic associations, Professor Wang continues to drive interdisciplinary advances in pancreatic disease management and surgery.

Publication Profile:

Google Scholar

Strengths for the Award:

Professor Wang Gang has demonstrated exceptional contributions to the field of pancreatic diseases, particularly in acute pancreatitis. His groundbreaking research on ferroptosis, necroptosis, and mitochondrial autophagy has resulted in a significant body of work with over 166 publications, many of which are high-impact studies. As a Principal Investigator, he has successfully led multiple National Natural Science Foundation projects, contributing innovative diagnostic and therapeutic strategies that have advanced the management of pancreatic diseases. His editorial roles in prominent journals and his collaborations with pharmaceutical companies reflect his recognition as a leader in the field. Moreover, his numerous provincial awards, including the Heilongjiang Science & Technology Progress First Prizes, further affirm his leadership and expertise.

Areas for Improvements:

While Professor Wang has achieved great success in pancreatic disease research, his work could benefit from expanding into interdisciplinary collaborations with other medical specialties to further enhance the clinical translation of his findings. Additionally, increasing the international visibility of his work through more international collaborations or partnerships could amplify its impact.

Education:

Professor Wang Gang holds both an MD and a Ph.D., specializing in general surgery. He completed his advanced postdoctoral training focusing on pancreatic diseases and advanced laparoscopic techniques. His rigorous academic journey has laid a strong foundation for his successful career in research, clinical practice, and teaching. Professor Wang’s educational experience reflects his deep commitment to advancing both his academic qualifications and medical expertise, leading to his leadership roles in multiple professional organizations and the development of several groundbreaking research projects in pancreatic health.

Experience:

Professor Wang has extensive clinical and research experience in pancreatic diseases. He serves as the Director of the Department of Oncology and Laparoscopy Surgery at The First Affiliated Hospital of Harbin Medical University. His research interests revolve around the pathogenesis and treatment of acute pancreatitis and other pancreatic disorders. In addition to his clinical role, he is a prolific academic leader, mentoring doctoral and postdoctoral researchers. With over 166 publications, he has led significant projects funded by the National Natural Science Foundation and has collaborated with top pharmaceutical companies. He has also served in prominent editorial and peer reviewer roles for many scientific journals, solidifying his influence in the research community.

Awards and Honors:

Professor Wang Gang has received numerous prestigious awards, including multiple Heilongjiang Science & Technology Progress First Prizes (2024, 2021). As a High-Level Talent of Heilongjiang Province and Outstanding Talent of Heilongjiang New Century, he is recognized for his outstanding contributions to medical research. His work has also earned him multiple accolades for his leadership and research excellence. As a principal investigator, he has received several National Natural Science Foundation grants, marking him as a leading figure in the field of pancreatic diseases. His success reflects his commitment to advancing medical science and improving patient outcomes, particularly in pancreatic diseases.

Research Focus:

Professor Wang’s research primarily focuses on the molecular mechanisms underlying pancreatic diseases, including acute pancreatitis and pancreatic cancer. His work has identified key molecular pathways, such as ferroptosis and necroptosis, in the progression of these diseases. His translational research connects basic science with clinical applications, optimizing surgical protocols and diagnostic tools. His studies on mitochondrial dysfunction, autophagy imbalance, and exosomal crosstalk provide novel insights into disease pathogenesis and potential therapeutic strategies. As a leading researcher, he has contributed significantly to the understanding of pancreatic diseases and continues to push boundaries in both basic and clinical research.

Publications Top Notes:

  • Ferroptosis: Past, Present, and Future 📚, Cell Death & Disease, 2020

  • Long Noncoding RNA MALAT1 Promotes Aggressive Pancreatic Cancer Proliferation and Metastasis via Autophagy 📚, Molecular Cancer Therapeutics, 2016

  • A New Algorithm of Blind Color Image Watermarking Based on LU Decomposition 📚, Multidimensional Systems and Signal Processing, 2018

  • Early Prediction of Infected Pancreatic Necrosis Secondary to Necrotizing Pancreatitis 📚, Medicine, 2017

  • A Three-Dimensional Failure Criterion for Hard Rocks Under True Triaxial Compression 📚, Rock Mechanics and Rock Engineering, 2020

  • Plasma and Tumor Levels of Linc-pint as Diagnostic and Prognostic Biomarkers for Pancreatic Cancer 📚, Oncotarget, 2016

  • The Effect of Emodin-Assisted Early Enteral Nutrition on Severe Acute Pancreatitis 📚, Mediators of Inflammation, 2007

  • Hydrogen Sulphide Exacerbates Acute Pancreatitis by Over-Activating Autophagy via AMPK/mTOR Pathway 📚, Journal of Cellular and Molecular Medicine, 2016

  • Necroptosis: A Potential, Promising Target in Acute Pancreatitis 📚, Apoptosis, 2016

  • Effects of Carbon Monoxide Releasing Molecule-Liberated CO on Severe Acute Pancreatitis in Rats 📚, Cytokine, 2010

  • A Novel Blind Color Image Watermarking Based on Contourlet Transform and Hessenberg Decomposition 📚, Multimedia Tools and Applications, 2018

Conclusion:

Professor Wang Gang is an exemplary candidate for the Best Researcher Award due to his impressive academic achievements, groundbreaking contributions to pancreatic disease research, and his ongoing efforts to bridge basic science and clinical practice. His work has not only advanced our understanding of acute pancreatitis but has also paved the way for potential therapeutic advancements. His leadership in research, publications, and collaboration highlights his remarkable contributions to the medical and scientific community.

Sabyasachy Mistry | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Sabyasachy Mistry | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Sabyasachy Mistry , US FDA , United States

Sabyasachy (Babu) Mistry is a highly skilled bioanalyst with over sixteen years of experience in analytical chemistry, organic synthesis, and bioanalytical method development. He is currently working at the US Food and Drug Administration (FDA) in Silver Spring, MD. Mistry has a broad expertise that spans liquid chromatography-mass spectrometry (LC-MS/MS), enzyme-linked immunosorbent assay (ELISA), nuclear magnetic resonance (NMR), and various organic chemistry techniques. With strong communication and problem-solving skills, Mistry excels both as a team member and independent researcher. He has contributed to multiple scientific publications, focusing on pharmacokinetics, drug discovery, and regulatory practices, in addition to mentoring students and offering leadership roles in academic settings.

Publication Profile: 

Scopus

Strengths for the Award:

Sabyasachy (Babu) Mistry’s distinguished experience in analytical and bioanalytical chemistry makes him a strong contender for the Research for Best Researcher Award. With over sixteen years of experience, his expertise spans liquid chromatography-mass spectrometry (LC-MS/MS), enzyme-linked immunosorbent assays (ELISA), and computational chemistry, among others. His work in drug solubility and pharmacokinetics, particularly his contributions to hERG assays, is highly relevant to regulatory sciences. Mistry’s capacity to bridge scientific inquiry with FDA regulations ensures his research not only advances scientific understanding but also directly supports regulatory science. His well-documented research, combined with leadership roles and multiple awards, reinforces his research excellence.

Areas for Improvements:


While Mistry’s expertise is extensive, further expansion into collaborative, cross-disciplinary projects could further enrich his body of work. Engaging more in international research initiatives could lead to innovative research outcomes and foster broader scientific networks.

Education:

Sabyasachy Mistry holds a Ph.D. in Analytical Chemistry from Purdue University, where he conducted research under the guidance of Professor Paul G. Wenthold. His dissertation focused on mass spectrometric detection of indophenols for phenol analysis. Prior to this, Mistry completed his M.S. in Organic Chemistry from the University of Dhaka in Bangladesh, where he worked with Professor Nilufar Nahar. His solid educational foundation, combined with his hands-on research experience, has provided him with expertise in a wide range of scientific disciplines, including analytical chemistry, organic synthesis, and bioanalytical methods. Furthermore, Mistry completed the CERSI Immersion Course in Drug Discovery, Drug Development, and Regulation at the UCSF-Stanford Center of Excellence in Regulatory Science and Innovation, strengthening his knowledge in FDA regulations and drug development processes.

Experience:

Mistry’s extensive professional experience spans over a decade in both academic and regulatory environments. Since 2020, he has been serving as a Bio-analyst at the US Food and Drug Administration (FDA), where he applies his expertise in analytical chemistry to support drug discovery and regulatory science. At Purdue University, Mistry worked as a Teaching Assistant (TA) and Head TA in the Department of Chemistry from 2014 to 2020, fostering the growth of new scientists while also contributing to research. His responsibilities included conducting experiments, guiding graduate students, and presenting research findings. Mistry’s work involves advanced techniques such as LC-MS/MS, HPLC, NMR, and computational chemistry tools like Gaussian and Q-Chem. His cross-disciplinary research has contributed to the scientific understanding of pharmacokinetics, drug solubility, and enzyme activity, aligning with regulatory practices in drug approval processes.

Awards and Honors:

Sabyasachy Mistry has been recognized for his outstanding contributions to analytical and bioanalytical chemistry. He was awarded the Graduate Student Travel Award at the 67th ASMS Conference on Mass Spectrometry and Allied Topics in June 2019 in Atlanta, GA. Additionally, Mistry received multiple Travel Scholarships for his student work at the ASMS conferences from 2016 to 2018, showcasing his dedication to advancing scientific knowledge. His role as a volunteer and mentor further exemplifies his leadership within the academic community. These awards highlight his exceptional skills in mass spectrometry and analytical techniques, further solidifying his expertise in the field of chemical research. Mistry’s ability to present complex scientific data and his contributions to regulatory science have garnered recognition from peers and industry professionals alike.

Research Focus:

Sabyasachy Mistry’s research focuses on bioanalytical chemistry, pharmacokinetics, and regulatory science, particularly in drug discovery and development. His work involves the application of advanced techniques such as LC-MS/MS, ELISA, HPLC, and mass spectrometry to investigate drug interactions, solubility, and bioavailability. Mistry’s research also extends to the computational aspects of chemistry, using density functional theory (DFT) calculations to predict reaction profiles and optimize molecular interactions. A key area of interest for Mistry is studying the effects of drug formulations on biological systems, particularly through hERG assays to assess drug safety and efficacy. His work aligns with FDA regulations and contributes to improving drug regulatory processes. Additionally, Mistry has a strong background in organic chemistry, working on the synthesis and modification of small organic molecules. This combination of experimental and computational chemistry makes his research multifaceted, bridging the gap between scientific discovery and regulatory implementation.

Publications Top Notes:

  1. Determination of Lopinavir and Ritonavir in hERG solution to Support In Vitro hERG Block Potency Assessment Using LC-MS/MS: The Challenge of Poor Drug Solubility 📑
  2. Evaluation of a Sequential Antibiotic Treatment Regimen of Ampicillin, Ciprofloxacin, and Fosfomycin against Escherichia coli CFT073 in the Hollow Fiber Infection Model Compared with Simultaneous Combination Treatment 💊
  3. Determination of Five Positive Control Drugs in hERG External Solution (Buffer) by LC-MS/MS to Support In Vitro hERG Assay as Recommended by ICH S7B ⚖️
  4. Probing the Pyrolysis of Guaiacol and Dimethoxybenzenes Using Collision-Induced Dissociation Charge-Remote Fragmentation Mass Spectrometry 🔬
  5. Investigation of the Substituent Effects of the Azide Functional Group Using the Gas-Phase Acidities of 3- and 4-Azidophenols 📚
  6. Mass Spectrometric Detection of the Gibbs Reaction for Phenol Analysis 🔍
  7. Participation of C-H Protons in the Dissociation of a Proton Deficient Dipeptide 💡
  8. The HIVToolbox 2 Web System Integrates Sequence, Structure, Function and Mutation Analysis 🧬
  9. The Geogenomic Mutational Atlas of Pathogens (GoMAP) Web System 🌍
  10. Effect of Sodium Bicarbonate on the Mechanical and Degradation Properties of Short Jute Fiber Reinforced Polypropylene Composite by Extrusion Technique 🔧

Conclusion:

Sabyasachy Mistry has demonstrated exceptional scientific acumen and practical contributions in the field of bioanalytical chemistry. His expertise and leadership in various research domains position him as an excellent candidate for the Research for Best Researcher Award. His continued work on drug discovery and regulatory science will likely result in even greater contributions to both the scientific and regulatory communities.